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Abstract
Despite the subjective nature of many NLP
tasks, most NLU evaluations have focused on
using the majority label with presumably high
agreement as the ground truth. Less atten-
tion has been paid to the distribution of human
opinions. We collect ChaosNLI, a dataset
with a total of 464,500 annotations to study
Collective HumAn OpinionS in oft-used NLI
evaluation sets. This dataset is created by col-
lecting 100 annotations per example for 3,113
examples in SNLI and MNLI and 1,532 ex-
amples in αNLI. Analysis reveals that: (1)
high human disagreement exists in a notice-
able amount of examples in these datasets;
(2) the state-of-the-art models lack the abil-
ity to recover the distribution over human la-
bels; (3) models achieve near-perfect accuracy
on the subset of data with a high level of hu-
man agreement, whereas they can barely beat
a random guess on the data with low levels
of human agreement, which compose most of
the common errors made by state-of-the-art
models on the evaluation sets. This questions
the validity of improving model performance
on old metrics for the low-agreement part of
evaluation datasets. Hence, we argue for a
detailed examination of human agreement in
future data collection efforts, and evaluating
model outputs against the distribution over col-
lective human opinions.1

1 Introduction

Natural Language Understanding (NLU) evalua-
tion plays a key role in benchmarking progress
in natural language processing (NLP) research.
With the recent advance in language representa-
tive learning (Devlin et al., 2019), results on pre-
vious benchmarks have rapidly saturated. This
leads to an explosion of difficult, diverse propos-
als of tasks/datasets for NLU evaluation, including

1The ChaosNLI dataset and experimental scripts are avail-
able at https://github.com/easonnie/ChaosNLI

Natural Language Inference (e.g., SNLI, MNLI
and ANLI) (Bowman et al., 2015; Williams et al.,
2018; Nie et al., 2020), Grounded Commonsense
Inference (Zellers et al., 2018), Commonsense
QA (Talmor et al., 2019), Social Interactions Rea-
soning (Sap et al., 2019), Abductive Commonsense
Reasoning (αNLI) (Bhagavatula et al., 2020), etc.

One common practice followed by most of these
recent works is to simplify the evaluation of vari-
ous reasoning abilities as a classification task. This
is analogous to asking objective questions to a hu-
man in educational testing. This simplification not
only facilitates the data annotation but also gives
interpretable evaluation results, based on which
behaviors of the models are studied and then weak-
nesses are diagnosed (Sanchez et al., 2018).

Despite the straightforwardness of this formal-
ization, one assumption behind most prior bench-
mark data sourcing is that there exists a single pre-
scriptive ground truth label for each example. The
assumption might be true in human educational
settings where prescriptivism is preferred over de-
scriptivism because the goal is to test humans with
well-defined knowledge or norms (Trask, 1999).
However, it is not true for many NLP tasks due
to their pragmatic nature where the meaning of
the same sentence might differ depending on the
context or background knowledge.

Specifically for the NLI task, Manning (2006)
advocate that annotation tasks should be “natu-
ral” for untrained annotators, and the role of NLP
should be to model the inferences that humans
make in practical settings. Previous work (Pavlick
and Kwiatkowski, 2019) that uses a graded label-
ing schema on NLI, showed that there are inherent
disagreements in inference tasks. All these dis-
cussions challenge the commonly used majority
“gold-label” practice in most prior data collections
and evaluations.

Intuitively, such disagreements among humans

https://github.com/easonnie/ChaosNLI
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should be allowed because different annotators
might have different subjective views of the world
and might think differently when they encounter
the same reasoning task. Thus, from a descriptive
perspective, evaluating the capacity of NLP models
in predicting not only individual human opinions
or the majority human opinion, but also the over-
all distribution over human judgments provides a
more representative comparison between model
capabilities and ‘collective’ human intelligence.

Therefore, we collect ChaosNLI, a large set of
Collective HumAn OpinionS for examples in sev-
eral existing (English) NLI datasets, and compre-
hensively examine the factor of human agreement
(measured by the entropy of the distribution over
human annotations) on the state-of-the-art model
performances. Specifically, our contributions are:
• We collect additional 100 annotations for over 4k

examples in SNLI, MNLI-matched, and αNLI
(a total of 464,500 annotations) and show that
when the number of annotations is significantly
increased: (1) a number of original majority la-
bels fail to present the prevailing human opinion
(in 10%, 20%, and 31% of the data we collected
for αNLI, SNLI, and MNLI-matched, respec-
tively), and (2) large human disagreements exist
and persist in a noticeable amount of examples.

• We compare several state-of-the-art model2 out-
puts with the distribution of human judgements
and show that: (1) the models lack the ability
to capture the distribution of human opinions3;
(2) such ability differs from the ability to per-
form well on the old accuracy metric; (3) mod-
els’ performance on the subset with high levels
of human agreement is substantially better than
their performance on the subset with low lev-
els of human agreement (almost close to solved
versus random guess, respectively) and shared
mistakes by the state-of-the-art models are made
on examples with large human disagreements.

• We argue for evaluating the models’ ability to
predict the distribution of human opinions and
discuss the merit of such evaluation with respect
to NLU evaluation and model calibration. We
also give design guidance on crowd-sourcing
such collective annotations to facilitate future
studies on relevant pragmatic tasks.
2We test models including BERT, RoBERTa, XLNET, AL-

BERT, DistilBERT, and BART.
3We measure the Jensen-Shannon Distance (JSD) and the

Kullback–Leibler (KL) divergence between model softmax
outputs and the estimated distribution over human annotations.

The ChaosNLI dataset and experimental scripts
are available at https://github.com/easonnie/
ChaosNLI

2 Related Work

Uncertainty of Annotations. Past discussions
of human disagreement on semantic annotation
tasks were mostly focused on the uncertainty of
individual annotators and the noisiness of the data
collection process. These tasks include word sense
disambiguation (Erk and McCarthy, 2009; Jurgens,
2013), coreference (Versley, 2008), frame corpus
collection (Dumitrache et al., 2019), anaphora res-
olution (Poesio and Artstein, 2005; Poesio et al.,
2019), entity linking (Reidsma and op den Akker,
2008), tagging and parsing (Plank et al., 2014;
Alonso et al., 2015), and veridicality (De Marneffe
et al., 2012; Karttunen et al., 2014). These works
focused on studying the ambiguity of annotations,
how the design of the annotation setup might affect
the inter-annotator-agreement, and how to make
the annotations reliable. However, we consider the
disagreements and subjectivity to be an intrinsic
property of the populations. Our work discusses the
disagreements among a large group of individuals,
and further examines the relation between the an-
notation disagreement and the model performance.

Disagreements in NLI Annotations. Our work
is significantly inspired by previous work that re-
veals the “inherent disagreements in human textual
inference” (Pavlick and Kwiatkowski, 2019). It
employed 50 independent annotators for a “graded”
textual inference task, yielding a total of roughly
19,840 annotations, and validates that disagree-
ments among the annotations are reproducible sig-
nals. In particular, in their work, the labeling
schema is modified from 3-way categorical NLI
to a graded one, whereas our study keeps the orig-
inal 3-way labeling schema to facilitate a direct
comparison between old labels and new labels, and
focuses more on giving an in-depth analysis regard-
ing the relation between the level of disagreements
among humans and the state-of-the-art model per-
formance.

Graded Labeling Schema. Some previous work
attempts to address the issues with human disagree-
ments by modifying or re-defining the evaluation
task with a more fine-grained ordinal or even real-
value labeling schema rather than categorical la-
beling schema (Zhang et al., 2017; Pavlick and

https://github.com/easonnie/ChaosNLI
https://github.com/easonnie/ChaosNLI
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Kwiatkowski, 2019; Chen et al., 2019) to reduce
the issues of ambiguity. Our work is independent
and complementary to those by providing analysis
on general language understanding from a collec-
tive distribution perspective.

3 Data Collection

Our goal is to gather annotations from multiple
annotators to estimate the distribution over human
opinions. Section 3.1 and 3.2 state some details
of the collection. More importantly, Section 3.3
explains the challenges of such data collection and
how our designs ensure data quality.

3.1 Dataset and Task
ChaosNLI provides 100 annotations for each ex-
ample in three sets of existing NLI-related datasets.
The first two sets are a subset of the SNLI devel-
opment set and a subset of MNLI-matched devel-
opment set, in which the examples satisfy the re-
quirement that their majority label agrees with only
three out of five individual labels collected by the
original work (Bowman et al., 2015; Williams et al.,
2018).4 The third set is the entire αNLI develop-
ment set introduced in Bhagavatula et al. (2020). To
simplify the terminology, we denote SNLI, MNLI-
m and αNLI portion of the ChaosNLI as ChaosNLI-
S, ChaosNLI-M, and ChaosNLI-α, respectively.

3.2 Annotation Interface
To collect multiple labels for each example, we
employed crowdsourced workers from Mechanical
Turker with qualifications. The annotation interface
is implemented using the ParlAI5 (Miller et al.,
2017) framework. The collection is embodied in a
multi-round interactive environment where at each
round annotators are instructed to do one single
multi-choice selection. This reduces the annotators’
mental load and helps them focus on the human
intelligence tasks (HITs). The compressed versions
of instructions are shown in Figure 1. Screenshots
of Turker interfaces are attached in Appendix A.

3.3 Quality Control
Collecting the “soft-label” for examples based on
plausible human opinions is difficult because we

4All the examples in SNLI and MNLI development and
test set come with 5 labels and the ground truth labels are
defined by majority label in all previous studies. Here, we
intentionally choose to label examples with a low level of
human agreement in SNLI and MNLI to highlight the factor
of human disagreement. Both datasets are in English.

5https://parl.ai/

Natural Language Inference (NLI)
Given a context, a statement can be either:
• Definitely correct (Entailment); or
• Definitely incorrect (Contradiction); or
• Neither (Neutral).
Your goal is to choose the correct category for a given pair of context and
statement.
An automatic detector will estimate your annotation accuracy on this task. If
your estimated accuracy is too low, you might be disqualified.
If you feel uncertain about some examples, just choose the best category
you believe the statement should be in.

Examples:
Context: A guitarist is playing in a band.
Statement: Some people are performing.
Answer: The statement is definitely correct.

Abductive Natural Language Inference (αNLI)
Given two observations (O-Beginning and O-Ending), and two hypotheses
(H1 and H2), your goal is to choose one of the hypotheses that is more likely
to cause O-Beginning to turn into O-Ending.
An automatic detector will estimate your annotation accuracy on this task. If
your estimated accuracy is too low, you might be disqualified.
If you feel uncertain about some examples, just choose the best category
you believe the statement should be in.

Examples:
O-Beginning: Jenny cleaned her house and went to work, leaving the win-
dow just a crack open.
H1: A thief broke into the house by pulling open the window.
H2: Her husband went home and close the window.
O-Ending: When Jenny returned home she saw that her house was a mess.
Answer: H1.

Figure 1: Mechanical Turker instructions (compressed)
for NLI and αNLI.

need to enforce that each annotator will genuinely
try their best on the work to avoid errors caused
by carelessness. We can not denoise the data by
collecting more annotations and aggregating them
with majority voting, nor can we use the inter-
annotator agreement to measure data quality.

To this end, we select a set of examples , which
exhibit high human agreement for a single label, to
rigorously test and track the performance of each
annotator. We call them the set of unanimous ex-
amples. To obtain such set, we sampled examples
from SNLI, MNLI, and αNLI training set, then
crowdsourced 50 annotations for each of them,
and finally selected those whose human agreement
is indeed high (majority>95%). Throughout the
collection process, we employ the following three
mechanisms to ensure label quality:

On-boarding test. Every annotator needs to pass
an on-boarding test before they can work on any
real example. The test includes five easy examples
pre-selected from the set of unanimous examples.
If they fail to give the correct selection for any
of them, they will be prevented from working on
any example. The mechanism tests whether the
annotator understands the task.

https://parl.ai/
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Training phase. After passing the on-boarding
test, each annotator will be given 10 to 12 examples
from the set of unanimous examples to be further
annotated. For each example, if an annotator gives
a label that is different from the pre-collected legit-
imate label, the annotator will be prompted with
the correct label and told to keep concentrating on
the task. If the accuracy of an annotator on training
examples is below 75%, the annotator will be disal-
lowed to proceed. This training mechanism further
helps the annotators get familiar with the task.

Performance tracking. After the training phase,
annotators will be given real examples. For each
example to be annotated, there will be 10% chance
that the example is sampled from the set of unan-
imous examples. Again, for such examples, if an
annotator gives a label that is different from the
pre-collected legitimate label, the annotator will be
prompted with the correct label and told to keep
concentrating on the task. If the accuracy of an
annotator on those examples is below 75% or if the
annotator gives four consecutive incorrect labels,
the annotator will be blocked. This mechanism
tracks the performance of each annotator and guar-
antees that each annotator is capable and focused
when working on any examples.

Table 1 shows that on-boarding test filters more
than half of the turkers. Figure 2 shows that the
average accuracy of a single Turker on the set of
unanimous examples improves as the annotators
have completed more examples and converges at
around 92%.6 The observations indicate that our
filtering mechanisms are rigorous and help improv-
ing and keeping annotator concentrate during the
collection task. The design gives guidelines for
future work on how to ensure data quality where
normal inter-annotator-agreement measures are not
applicable.

3.4 Other Details

The entire collection takes about one month to com-
plete over 464K annotations. The mean/median
time a turker spent on each example ranges from
10 to 20 seconds as shown in Table 1 (and we pay
up to $0.5 on average per HIT of ten examples). We
observe high variance in the time/example across
turkers (including over-estimation due to breaks),
hence the median estimate is more reliable. We

6This is comparable to the accuracy of a majority voting
over 5 aggregated annotations in previous work (Nangia and
Bowman, 2019).
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Figure 2: The accuracy range of the annotators on the
NLI training and hidden unanimous examples as they
annotated their first 300 examples.

Data QFR (%) FR (%) #Turkers Time (sec)

ChaosNLI-α 7.4 1.3 1,903 18.7 / 12.7
ChaosNLI-S 39.9 14.1 1,639 15.9 / 10.1
ChaosNLI-M 39.9 14.1 1,744 21.2 / 13.3

Table 1: MTurk statistics on the three datasets. ‘QFR’
or Qualification Fail Rate refers to the failure rate of the
onboarding qualification test. ‘FR’ or Filter Rate refers
to the ratio of Turkers who got blocked (during train-
ing phase and performance tracking described in Sec-
tion 3.3) because their performance on the unanimous
examples set are too low. SNLI and MNLI-m shared
the same onboarding test and the same unanimous ex-
amples set, therefore their numbers are the same. The
‘#Turkers’ column denotes the final set of filtered turk-
ers that contributed to the released annotations. The
last column ‘Time’ refers to the mean / median time
spent by Turkers per example in seconds.

had a large set of qualified turkers for our final an-
notations. The total time of one month is largely
attributed to the rigorous quality control mecha-
nism via careful on-boarding qualification tests and
quality monitoring.

4 Analysis of Human Judgements

Statistics. We collected 100 new annotations for
each example in the three sets described in Sec-
tion 3.1. Table 2 shows the total number of exam-
ples in the three sets and the percentage of cases
where the new majority label is different from the
old majority label (based on 5 annotations for SNLI
and MNLI and 1 annotation for αNLI in their orig-
inal dataset, respectively). Since we only collected
labels for subsets of SNLI and MNLI-m, we also
include the size of the original SNLI and MNLI-m
development sets and the change-of-label ratio with
respect to the original sets. The findings suggest
that the old labels fail to present the genuine major-
ity labels among humans for a noticeable amount
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Figure 3: Histogram of entropy of estimated distribution over human annotations on ChaosNLI-α, ChaosNLI-S,
ChaosNLI-M.

Data # Examples Change rate (%)

ChaosNLI-α 1,532 10.64
ChaosNLI-S 1,514 (10k) 24.97 (3.78)
ChaosNLI-M 1,599 (10k) 31.77 (5.08)

Table 2: Data Statistics. ‘# Examples’ refers to the to-
tal number of examples. ‘Change rate’ refers to the
percentage that the old majority label is different from
the new majority label. The number in the parentheses
shows the size of the entire original SNLI and MNLI-
m development set and the percentage of label changes
with respect to the entire set.

(10%, 25%, and 30% for ChaosNLI-α, ChaosNLI-
S, and ChaosNLI-M, respectively) of the data. The
label statistics for individual datasets can be found
in Appendix D.

Examples. Table 3 and Table 4 show some col-
lected NLI examples that either have low levels of
human agreements or have different majority la-
bels as opposed to the old ground truth labels. We
can see that the resultant labels we collected not
only provide more fine-grained human judgements
but also give a new majority label that is better at
presenting the prevailing human opinion. More-
over, there indeed exist different but plausible in-
terpretations for the examples that are of low-level
of human agreements and the discrepancy is not
just noise but presents the distribution over human
judgements with “higher resolutions”. This is con-
sistent with the finding in Pavlick and Kwiatkowski
(2019).

Entropy Distribution. To further investigate the
human uncertainty in our collected labels, we show
the histogram of the entropy of label distribution
for ChaosNLI-α, ChaosNLI-S and ChaosNLI-M
in Figure 3. The label distribution is approximated
by the 100 collected annotations. The entropy is
calculated with H (p) = −

∑
i∈C pi log(pi) and

pi = ni∑
j∈C nj

, where C is the label category set
and ni is the number of labels for category i. The

entropy value gives a measure for the level of un-
certainty or agreement among human judgements,
where high entropy suggests low level of agreement
and vice versa.

The histogram for the ChaosNLI-α shows a dis-
tribution that is similar to a U-Shaped distribution.
This indicates that naturally occurring examples in
ChaosNLI-α are either highly certain or uncertain
among human judgements. In ChaosNLI-S and
ChaosNLI-M, the distribution shows only one ap-
parent peak; and the distribution for ChaosNLI-M
is slightly skewed towards higher entropy direc-
tion. As described in Section 3.1, ChaosNLI-S and
ChaosNLI-M are subsets of SNLI and MNLI-m
development that are of low-level of human agree-
ments, it could be expected that the majority of
naturally occurring SNLI and MNLI data would
also have low entropy, which will form another
peak around the beginning of the x-axis resulting a
U-like shape similar to ChaosNLI-α.7

5 Analysis of Model Predictions

In Section 4, we discussed the statistics and some
examples for the new annotations. The observa-
tion naturally raises two questions regarding the
development of NLP models: (1) whether the state-
of-the-art models are able to capture this distribu-
tion over human opinions; and (2) how the level
of human agreements will affect the performance
of the models. Hence, we investigate these ques-
tions in this section. Section 5.1 and 5.2 state our
experimental choices. Section 5.3 discusses the
results regarding the extent to which the softmax
distributions produced by state-of-the-art models
trained on the dataset reflects similar distributions
over human annotations. Section 5.4 demonstrate
the surprising influence of human agreements on
the model performances.

7In our pilot study, we collected 50 labels for 100 exam-
ples of SNLI where all five original annotators agreed with
each other, the average entropy of those is 0.31. The average
entropy of examples on ChaosNLI-S is 0.80.
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Context Hypothesis Old Labels New Labels Source Typemajority and individual labels

With the sun rising, a person is gliding with a huge
parachute attached to them.

The person is falling to safety with the parachute Entailment
E E E N N

Entailment
E(50) N(50)

SNLI Low agreements

A woman in a tan top and jeans is sitting on a
bench wearing headphones.

A woman is listening to music. Entailment
E E N N E

Neutral
N(93) E(7)

SNLI Majority changed

A group of guys went out for a drink after work,
and sitting at the bar was a real a 6 foot blonde
with a fabulous face and figure to match.

The men didn’t appreciate the figure of the blonde
woman sitting at the bar.

Contradiction
C N N C C

Contradiction
C(56) N(44)

MNLI Low agreements

In the other sight he saw Adrin’s hands cocking
back a pair of dragon-hammered pistols.

He had spotted Adrin preparing to fire his pistols. Neutral
N E N N E

Entailment
E(94) N(5) C(1)

MNLI Majority changed

Table 3: Examples from ChaosNLI-S and ChaosNLI-M development set. ‘Old Labels’ is the 5 label annotations
from original dataset. ‘New Labels’ refers to the newly collected 100 label annotations. Superscript indicates the
frequency of the label.

Observation-1 Sadie was on a huge hike.
Observation-2 Luckily she pushed herself and managed to reach the peak.

Hypothesis-1 Sadie almost gave down mid way.
Hypothesis-2 Sadie wanted to go to the top.

Old Label Hypothesis-2
New Labels Hypothesis-1(58) Hypothesis-2(42)

Observation-1 Uncle Jock couldn’t believe he was rich.
Observation-2 Jock lived the good life for a whole year, until he was poor again.

Hypothesis-1 He went to town and spent on extravagant things.
Hypothesis-2 Jock poorly managed his finances.

Old Label Hypothesis-1
New Labels Hypothesis-1(48) Hypothesis-2(52)

Table 4: Examples from the collected ChaosNLI-α de-
velopment set. The task asks which of the two hypoth-
esis is more likely to cause Observation-1 to turn into
Observation-2. Superscript indicates the frequency of
the label. Majority labels were marked in bold.

5.1 Models and Setup

Following the pretraining-then-finetuning trend,
we focus our experiments on large-scale language
pretraining models. We studied BERT (Devlin
et al., 2019), XLNet (Yang et al., 2019), and
RoBERTa (Liu et al., 2019) since they are consid-
ered to be the state-of-the-art models for learning
textual representations and have been used for a
variety of downstream tasks. We experimented on
both the base and the large versions of these models,
in order to analyze the parameter size factor. Ad-
ditionally, we include BART (Lewis et al., 2020),
ALBERT (Lan et al., 2019), and DistilBERT (Sanh
et al., 2019) in the experiments. ALBERT is de-
signed to reduce parameters of BERT by cross-
layer parameter sharing and decomposing embed-
ding. DistilBERT aims to compress BERT with
knowledge distillation. BART is a denoising au-
toencoder for pretraining seq-to-seq models.

For NLI, we trained the models on a combined
training set of SNLI and MNLI which contains over
900k NLI pairs. We used the best hyper-parameters
chosen by their original authors. For αNLI, we
trained the models on αNLI training set (169,654

examples). The hyper-parameters for αNLI were
tuned with results on αNLI development set. De-
tails of the hyper-parameters are in Appendix B.

5.2 Evaluation and Metrics
As formulated in Equation 4, we used the 100 col-
lected annotations for each example to approximate
the human label distributions for each example. In
order to examine to what extent the current models
are capable of capturing the collective human opin-
ions, we compared the human label distributions
with the softmax outputs of the neural networks
following Pavlick and Kwiatkowski (2019).

We used Jensen-Shannon Distance (JSD) as the
primary measure of the distance between the soft-
max multinomial distribution of the models and
the distributions over human labels because JSD is
a metric function based on a mathematical defini-
tion (Endres and Schindelin, 2003). It’s symmetric
and bounded with the range [0, 1], whereas the
Kullback–Leibler (KL) divergence (Kullback and
Leibler, 1951; Kullback, 1997) does not have these
two properties. We also used KL as a complemen-
tary measure. The two metrics are calculated as:

KL (p‖q) =
∑
i∈C

pi log

(
pi
qi

)
(1)

JSD (p‖q) =
√

1

2
(KL (p‖m) + KL (q‖m)) (2)

where p is the estimated human distribution, q is
model softmax outputs, and m = 1

2(p+ q).

5.3 Main Results
Table 5 reports the main results regarding the dis-
tance between model softmax distribution and esti-
mated human label distribution. In addition to the
models, we also show the results for the chance
baseline (the first row) and the results for estimated
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Model ChaosNLI-α ChaosNLI-S ChaosNLI-M

JSD↓ KL↓ Acc.↑ (old/new) JSD↓ KL↓ Acc.↑ (old/new) JSD↓ KL↓ Acc.↑ (old/new)

Chance 0.3205 0.406 0.5098/0.5052 0.383 0.5457 0.4472/0.5370 0.3023 0.3559 0.4509/0.4634

BERT-b 0.3209 3.7981 0.6527/0.6534 0.2345 0.481 0.7008/0.7292 0.3055 0.7204 0.5991/0.5591
XLNet-b 0.2678 1.0209 0.6743/0.6867 0.2331 0.5121 0.7114/0.7365 0.3069 0.7927 0.6373/0.5891
RoBERTa-b 0.2394 0.8272 0.7154/0.7396 0.2294 0.5045 0.7272/0.7536 0.3073 0.7807 0.6391/0.5922

BERT-l 0.3055 3.7996 0.6802/0.6821 0.23 0.5017 0.7266/0.7384 0.3152 0.8449 0.6123/0.5691
XLNet-l 0.2282 1.8166 0.814/0.8133 0.2259 0.5054 0.7431/0.7807 0.3116 0.8818 0.6742/0.6185
RoBERTa-l 0.2128 1.3898 0.8531/0.8368 0.221 0.4937 0.749/0.7867 0.3112 0.8701 0.6742/0.6354

BART 0.2215 1.5794 0.8185/0.814 0.2203 0.4714 0.7424/0.7827 0.3165 0.8845 0.6635/0.5922
ALBERT 0.2208 2.9598 0.8440/0.8473 0.235 0.5342 0.7153/0.7814 0.3159 0.862 0.6485/0.5897
DistilBert 0.3101 1.0345 0.592/0.607 0.2439 0.4682 0.6711/0.7021 0.3133 0.6652 0.5472/0.5103

Est. Human 0.0421 0.0373 0.885/0.97 0.0614 0.0411 0.775/0.94 0.0695 0.0381 0.66/0.86

Table 5: Model Performances for JSD, KL, and Accuracy on majority label. ↓ indicates smaller value is better.
↑ indicates larger value is better. For each column, the best values are in bold and the second best values are
underlined. “-b” and “-l” in the Model column denote “-base” and “-large”, respectively.

human performance (the last row). The chance
baseline gives each label equal probability when
calculating the JSD and KL measures. The ac-
curacy of the chance baseline directly shows the
proportion of the examples with the majority la-
bel in a specific evaluation set. To estimate the
human performance, we employed a new set of
annotators to collect another 100 labels for a set of
randomly sampled 200 examples on ChaosNLI-α,
ChaosNLI-S and ChaosNLI-M, respectively. For
a better estimation of ‘collective’ human perfor-
mance, we ensure that the new set of annotators
employed for estimating human performance is
disjoint from the set of annotators employed for
the normal label collection.8 In what follows, we
discuss the results.

Significant difference exists between model out-
puts and human opinions. The most salient in-
formation we can get is that there are large gaps
between model outputs and human opinions. To
be specific, the estimated collective human perfor-
mance gives JSD and KL scores far below 0.1 on all
three sets. However, the best JSD achieved by the
models is larger than 0.2 and the best KL achieved
by the models barely goes below 0.5 across the
table. The finding can be somewhat foreseeable
since none of the models are designed to capture
collective human opinions and suggests room for
improvement.

8The estimation of collective human performance can also
be viewed as calculating the JSD and KL between two disjoint
sets of 100 human opinions.

Even chance baseline is hard to beat. What is
more surprising is that a number of these state-of-
the-art models can barely outperform and some-
times even perform worse than the chance baseline
w.r.t. JSD and KL scores. On ChaosNLI-M, all the
models yield similar JSD scores to the chance base-
line and are beaten by it on KL. On ChaosNLI-α,
BERT-base performs worse than the chance base-
line on JSD and the scores of KL by all the models
are way higher than that of the chance baseline.
This hints that capturing human label distribution
is a common blind spot for many models.

There is no apparent correlation between the
accuracy and the two divergence scores. On
both ChaosNLI-S and ChaosNLI-M, DistilBERT
gives the best KL scores despite the fact that it
obtains the lowest accuracy on the majority label.
BERT-base gives the best JSD while having the sec-
ond lowest accuracy on ChaosNLI-M. RoBERTa-
large gives the highest accuracy on ChaosNLI-S
and ChaosNLI-M, and the second highest accuracy
on ChaosNLI-α but it only obtains the lowest JSD
on ChaosNLI-α. The best JSD score on ChaosNLI-
α is achieved by BART but it fails to give the best
accuracy. This hints that the ability required to
model the distribution of human labels differs from
that required to predict the majority label and per-
form well on the accuracy metric.

Large models are not always better. Direct
comparison between base and large models for
BERT, XLNet, and RoBERTa reveals that large
models cannot beat base models on ChaosNLI-α
and ChaosNLI-M on KL scores. Moreover, on
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Figure 4: Accuracy on different bins of data points whose entropy values are within specific quantile ranges.

BERT-base BERT-large XLNet-base XLNet-large RoBERTa-baseRoBERTa-large BART ALBERT DistilBert
0.0

0.1

0.2

0.3

0.4

0.5

JS
D

 o
n 

C
ha

os
N

LI
-

0.000-0.141
0.141-0.242
0.242-0.436
0.436-0.760
0.760-1.000

BERT-base BERT-large XLNet-base XLNet-large RoBERTa-baseRoBERTa-large BART ALBERT DistilBert
0.0

0.1

0.2

0.3

0.4

0.5

JS
D

 o
n 

C
ha

os
N

LI
-(

S
+M

)

0.000-0.663
0.663-0.912
0.912-1.045
1.045-1.206
1.206-1.584

Figure 5: JSD on different bins of data points whose entropy values are within specific quantile ranges.

ChaosNLI-M, all the large models give higher JSD
scores than the base models. However, all the
large models achieve higher accuracy than their
base model counterparts on all three evaluation sets.
This observation suggests that modeling the collec-
tive human opinions might require more thoughtful
designs instead of merely increasing model param-
eter size.

5.4 The Effect of Agreement
To study how human agreements will influence the
model performance, we compute the entropy of the
human label distribution (by Equation 4) for each
data point. Then, we partition ChaosNLI-α and the
union of ChaosNLI-S and ChaosNLI-M using their
respective entropy quantiles as the cut points. This
results in several bins with roughly equal numbers
of data points whose entropy lies in a specific range.
Figure 4 and 5 shows the accuracy and the JSD of
the models on different bins.9 We observe that:

• Across the board, there are consistent correla-
9Model JSD performances are similar to the accuracy per-

formances where all the models obtain worse results at the
bins with higher entropy range. One exception is the JSD of
DistilBert on ChaosNLI-α. This might due to the fact that
DistilBert is highly uncertain in its prediction and tend to give
even distribution for each label yielding similar results to the
chance baseline.

tions between the level of human agreements and
the accuracy of the model. This correlation is
positive, meaning that all models perform well
on examples with a high level of human agree-
ments while struggle with examples having a
low level of human agreements. Similar trends
also exists in JSD.
• Accuracy downgrades dramatically (from 0.9 to

0.5) as the level of human agreements decrease.
• The model barely outperforms and sometimes

even under-performs the chance baseline on bins
with the lowest level of human agreements. For
both αNLI and NLI, the accuracy of most mod-
els on the bin with the lowest level of human
agreements does not surpass 60%.

These results reveal that most of the data (which
often compose the majority of the evaluation set)
with a high level of human agreement have been
solved by state-of-the-art models, and most of the
common errors on popular benchmarks (like αNLI,
SNLI, and MNLI) lie in the subsets where human
agreement is low. However, because of the low
human agreement, the model prediction will be
nothing more than a random guess of the major-
ity opinion. This raises an important concern that
whether improving or comparing the performance
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on this last missing part of the benchmarks is ad-
visable or useful.

6 Discussion & Conclusion

While common practice in natural language evalua-
tion compares the model prediction to the majority
label, Section 5.4 questions the value of continuing
such evaluation on current benchmarks as most of
the unsolved examples are of low human agree-
ment. To address this concern, we suggest NLP
models be evaluated against the collective human
opinion distribution rather than one opinion aggre-
gated from a set of opinions, especially on tasks
which take a descriptivist approach10 to language
and meaning, including NLI and common sense
reasoning. This not only complements prior evalu-
ations by helping researchers understand whether
model performance on a specific data point is reli-
able based on its human agreement, but also makes
it possible to evaluate models’ ability to capture
the whole picture of human opinions. Section 5.3
shows that such ability is missing from current mod-
els and potential room for improvement is huge.

It is also important to note that the level of hu-
man agreement is an intrinsic property of a data
point. Section 5.4 demonstrates that such a prop-
erty can be an indicator of the difficulty of the
modeling. This hints at the connections between
human agreements and uncertainty estimation or
calibration (Guo et al., 2017) where machine learn-
ing models are required to produce the confidence
value of their predictions, leading to important ben-
efits in real-world applications.

In conclusion, we hope our data and analysis
inspire future directions such as explicit modeling
of collective human opinions; providing theoretical
supports for the connection between human dis-
agreement and the difficulty of acquiring language
understanding in general; exploring potential us-
age of these human agreements; and studying the
source of the human disagreements and its relations
to different linguistic phenomena.
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A Annotation Interface

Figure 6 and 7 show the screenshots for NLI and
αNLI collection, respectively.

B Hyperparameters

For SNLI and MNLI, we used the same hyper-
parameters chosen by their original respective au-
thors. For αNLI, we tuned batch size, learning rate
and the number of epoch. For BERT, XLNet, and
RoBERTa, we only searched parameters for large
models and the base models use the same hyper-
parameters based on the results of the large ones.
Table 8 shows the details.

C Training Size and Trajectory

Figure 8 show the training trajectory and the
changes of the accuracy and JSD of RoBERTa-
large on four bins as the training data gradually
increased in log space. The plots reveal that the
accuracy of the models converges faster given fair
amount of training data on bins with a high level of
human agreements.

D Label Statistics

Labeling statistics can be found in Table 7. It is
worth noting that there is a shift of majority labels
from neutral to entailment in MNLI-m. We assume
the difference might be due to multi-genre nature
of the MNLI dataset, and collecting more intuitive
and concrete reasons for such an observation from a
cognitive or linguistic perspective will be important
future work.

E Other Details

Our neural models are trained using a server with
a Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz
(10 cores) and 4 NVIDIA TITAN V GPUs. Ta-
ble 6 shows the urls where we downloaded external
resources.

Resource URL

SNLI https://nlp.stanford.edu/
projects/snli

MNLI https://cims.nyu.edu/
˜sbowman/multinli

αNLI http://
abductivecommonsense.xyz

ParlAI https://parl.ai

Huggingface
transformers

https://github.com/
huggingface/transformers

Table 6: Links for external resources.

https://nlp.stanford.edu/projects/snli
https://nlp.stanford.edu/projects/snli
https://cims.nyu.edu/~sbowman/multinli
https://cims.nyu.edu/~sbowman/multinli
http://abductivecommonsense.xyz
http://abductivecommonsense.xyz
https://parl.ai
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Figure 6: Interface for NLI collection.

Figure 7: Interface for αNLI collection.
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Figure 8: Sub-figure 8a and 8b (the first two figures on the left) show the training trajectory of RoBERTa on αNLI
and SNLI@3+MNLI-m@3. Sub-figure 8c and 8d (the two on the right) show the performance curves of RoBERTa
on αNLI and SNLI@3+MNLI-m@3 as the training size increased.

Data Label distribution (entailment / neutral / contradiction)

Old majority New majority Old raw count (5 per ex.) New raw count (100 per ex.)

SNLI@3 486 / 677 / 351 421(-65) / 813(+136) / 280(-71) 2,470 / 3,420 / 1,673 45,113 / 76,063 / 30,185
MNLI-m@3 513 / 721 / 365 741(+228) / 583(-138) / 275(-90) 2,483 / 3,602 / 1,910 64,370 / 62,794 / 32,704

Table 7: NLI label distribution. ‘Raw count’ refers to the count of all individual labels. Superscript indicates the
number of changes comparing to old majority labels.

Hyperparam {Search Range} BERT XLNet RoBERTa BART ALBERT DistilBert

Learning Rate {5e-5, 1e-5, 5e-6} 5e-5 5e-6 5e-6 5e-6 5e-6 5e-6
Batch Size {32, 64} 32 32 32 64 32 32
Weight Decay 0.0 0.0 0.0 0.01 0.0 0.0
Max Epochs {3, 4, 5} 5 5 3 5 5 5
Learning Rate Decay Linear Linear Linear Linear Linear Linear
Warmup ratio 0.1 0.1 0.1 0.1 0.1 0.1

Table 8: The best hyperparameters for finetuning models on αNLI.


