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Abstract

We introduce scientific claim verification, a
new task to select abstracts from the re-
search literature containing evidence that SUP-
PORTS or REFUTES a given scientific claim,
and to identify rationales justifying each de-
cision. To study this task, we construct SCI-
FACT, a dataset of 1.4K expert-written scien-
tific claims paired with evidence-containing
abstracts annotated with labels and rationales.
We develop baseline models for SCIFACT, and
demonstrate that simple domain adaptation
techniques substantially improve performance
compared to models trained on Wikipedia or
political news. We show that our system is
able to verify claims related to COVID-19 by
identifying evidence from the CORD-19 cor-
pus. Our experiments indicate that SCIFACT
will provide a challenging testbed for the de-
velopment of new systems designed to retrieve
and reason over corpora containing specialized
domain knowledge. Data and code for this
new task are publicly available at https://
github.com/allenai/scifact. A leader-
board and COVID-19 fact-checking demo
are available at https://scifact.apps.

allenai.org.

1 Introduction

Due to rapid growth in the scientific literature, it
is difficult for researchers – and the general pub-
lic even more so – to stay up to date on the latest
findings. This challenge is especially acute during
public health crises like the current COVID-19 pan-
demic, due to the extremely fast rate at which new
findings are reported and the risks associated with
making decisions based on outdated or incomplete
information. As a result, there is a need for auto-
mated tools to assist researchers and the public in
evaluating the veracity of scientific claims.

∗Work performed during internship with the Allen Insti-
tute for Artificial Intelligence.
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Figure 1: A scientific claim, supported by evidence
identified by our system. To correctly verify this claim,
the system must possess background knowledge that
troponin is a protein found in cardiac muscle and that
elevated levels of troponin are a marker of cardiac
injury. In addition, it must be able to reason about di-
rectional relationships between scientific processes: re-
placing higher with lower would cause the rationale
to REFUTE the claim rather than SUPPORT it. Finally,
the system should interpret p < 0.001 as an indication
that the reported finding is statistically significant.

Fact-checking – a task in which the veracity
of an input claim is verified against a corpus of
documents that support or refute the claim – has
been studied to combat the proliferation of misin-
formation in political news, social media, and on
the web (Thorne et al., 2018; Hanselowski et al.,
2019). However, verifying scientific claims poses
new challenges to both dataset construction and
effective modeling. While political claims are read-
ily available on fact-checking websites and can be
verified by crowd workers, annotators with exten-
sive domain knowledge are required to generate
and verify scientific claims.

In addition, NLP systems for scientific claim
verification must possess additional capabilities be-
yond those required to verify factoid claims. For
instance, to verify the claim shown in Figure 1, a

https://github.com/allenai/scifact
https://github.com/allenai/scifact
https://scifact.apps.allenai.org
https://scifact.apps.allenai.org
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Claim 1: Lopinavir / ritonavir have exhibited favorable clinical responses when used as a treatment for coronavirus.

Supports: . . . Interestingly, after lopinavir/ritonavir (Kaletra, AbbVie) was administered, β-coronavirus viral loads significantly
decreased and no or little coronavirus titers were observed.

Refutes: The focused drug repurposing of known approved drugs (such as lopinavir/ritonavir) has been reported failed for
curing SARS-CoV-2 infected patients. It is urgent to generate new chemical entities against this virus . . .

Claim 2: The coronavirus cannot thrive in warmer climates.

Supports: ...most outbreaks display a pattern of clustering in relatively cool and dry areas...This is because the environment
can mediate human-to-human transmission of SARS-CoV-2, and unsuitable climates can cause the virus to destabilize quickly...

Refutes: ...significant cases in the coming months are likely to occur in more humid (warmer) climates, irrespective of the
climate-dependence of transmission and that summer temperatures will not substrantially limit pandemic growth.

Table 1: Evidence identified by our system as supporting and refuting two claims concerning COVID-19.

system must have the ability to access scientific
background knowledge, reason over increases and
decreases in quantities or measurements, and make
sense of specialized statistical language.

In this paper, we introduce the task of scien-
tific claim verification to evaluate the veracity of
scientific claims against a scientific corpus. Ta-
ble 1 presents some examples. To facilitate re-
search on this task, we construct SCIFACT, an
expert-annotated dataset of 1,409 scientific claims
accompanied by abstracts that support or refute
each claim, and annotated with rationales (Lei et al.,
2016) justifying each SUPPORTS / REFUTES deci-
sion. To create the dataset, we develop a novel an-
notation protocol in which annotators re-formulate
naturally occurring claims in the scientific literature
– citation sentences – into atomic scientific claims.
Using citation sentences as a source of claims both
speeds the claim generation process and guarantees
that the topics discussed in SCIFACT are represen-
tative of the research literature. In addition, citation
links indicate the exact documents likely to contain
evidence necessary to verify a given claim.

We establish performance baselines on SCIFACT

with an approach similar to DeYoung et al. (2020a),
which achieves strong performance on the FEVER

claim verification dataset (Thorne et al., 2018). Our
baseline is a pipeline system which retrieves ab-
stracts related to an input claim, uses a BERT-
based (Devlin et al., 2019) sentence selector to iden-
tify rationale sentences, and labels each abstract
as SUPPORTS, REFUTES, or NOINFO with respect
to the claim. We demonstrate that our baseline
can benefit from training on claims from domains
including Wikipedia articles and politics.

We showcase the ability of our model to ver-
ify expert-written claims concerning the novel
coronavirus COVID-19 against the newly-released

CORD-19 corpus (Wang et al., 2020). Expert anno-
tators judge retrieved evidence to be plausible for
23 of 36 claims.1 Our results and analyses demon-
strate the importance of the new task and dataset to
support significant future research in this domain.

In summary, our contributions include: (1) We
introduce and formalize the scientific claim verifi-
cation task. (2) We develop a novel annotation
protocol to generate and verify 1.4K naturally-
occurring claims about scientific findings. (3) We
establish strong baselines on this task, and iden-
tify substantial opportunities for improvement at
all stages of the modeling pipeline. (4) We demon-
strate the efficacy of our system in a real-world case
study verifying claims about COVID-19 against the
research literature.

2 Background and task definition

As illustrated in Figure 1, scientific claim verifi-
cation is the task of identifying evidence from the
research literature that SUPPORTS or REFUTES a
given scientific claim. Table 1 shows the results
of our system applied to claims about the novel
coronavirus COVID-19. For each claim, the sys-
tem identifies relevant scientific abstracts, and la-
bels the relation of each abstract to the claim as
either SUPPORTS or REFUTES. Verifying scientific
claims is challenging and requires domain-specific
background knowledge – for instance, in order to
identify the evidence supporting Claim 1 in Ta-
ble 1, the system must determine that a reduction in
coronavirus viral load indicates a favorable clinical
response, even though this fact is never mentioned.

Scientific claims In SCIFACT, a scientific claim is
an atomic verifiable statement expressing a finding

1We emphasize that our model is a research prototype and
should not be used to make any medical decisions whatsoever.
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about one aspect of a scientific entity or process,
which can be verified from a single source.2 For
instance, “The R0 of the novel coronavirus is 2.5”
is valid, but opinion-based statements like “The
government should require people to stand six feet
apart to stop coronavirus” are not. Compound
claims like “Aerosolized coronavirus droplets can
travel at least 6 feet and can remain in the air for 3
hours” should be split into two atomic claims.

Claims in SCIFACT are natural – they are de-
rived from citation sentences, or citances (Nakov
et al., 2004), that occur naturally in scientific ar-
ticles. This is similar to political fact-checking
datasets such as UKP Snopes (Hanselowski et al.,
2019), which use political fact-checking websites
as a source of natural claims. On the other hand,
claims in the popular FEVER dataset (Thorne et al.,
2018) are synthetic, since they are created by anno-
tators by mutating sentences from the Wikipedia
articles that will serve as evidence.

Supporting and refuting evidence In most fact-
checking work, claims are assigned a global truth
label based on the entirety of the available evidence.
For example in FEVER, the claim “Barack Obama
was the 44th President of the United States” can be
verified using Wikipedia as an evidence source.

While SCIFACT claims are indeed verifiable as-
sertions about scientific findings, accurately assign-
ing a global truth label to a scientific claim (given a
fixed scientific corpus) requires a systematic review
by a team of experts. In this work we focus on the
simpler task of assigning SUPPORTS or REFUTES

relations to individual claim-abstract pairs.
Each SUPPORTS or REFUTES relation between

claim and abstract must be justified by at least one
rationale. A rationale is a minimal collection of
sentences which, taken together as premises in the
context of the abstract, can reasonably be judged by
a domain expert as implying the claim. Rationales
facilitate the development of interpretable models
which not only have the ability to make label pre-
dictions, but can also identify the exact sentences
that are necessary for their decisions.

3 The SCIFACT dataset

The SCIFACT dataset consists of 1,409 scientific
claims3 verified against a corpus of 5,183 abstracts.

2Requiring annotators to search multiple sources increases
cognitive burden and decreases annotation quality.

3SCIFACT is comparable in size to recent scientific datasets
for tasks such as QA (e.g. PubMedQA (Jin et al., 2019)
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Figure 2: Corpus construction. Citing abstracts are
identified for each seed document. A claim is written
based on the source citance in the citing abstract.

Abstracts that support or refute each claim are an-
notated with rationales. We describe our corpus
creation and annotation process.

3.1 Data source and corpus construction

To construct SCIFACT, we use S2ORC (Lo et al.,
2020), a publicly-available corpus of millions of
scientific articles. To ensure that documents in our
dataset are of high quality, we randomly sample
articles from a manually curated collection of well-
regarded journals spanning domains from basic sci-
ence (e.g., Cell, Nature) to clinical medicine (e.g.,
JAMA, BMJ). The full list of journals is included in
Appendix C.1. We restrict to articles with at least
10 citations. The resulting collection is referred
to as our seed set. We use the S2ORC citation
graph to sample source citances from citing arti-
cles which cite these seed articles. If a citance cites
other articles not in the seed set, we refer to these
as co-cited articles and add them to the corpus, as
depicted in Figure 2. The content of the cited ab-
stracts encompasses a diverse array of topics within
biomedicine, as shown in Figure 3. The majority
of citances used for SCIFACT cite only the seed
article (no co-cited articles), as we found in initial
annotation experiments that these citances tended
to yield specific, easy-to-verify claims.

To expand the corpus, we identify five papers
cited in the same paper as each source citance but
in a different paragraph, and add these to the cor-
pus as distractor abstracts. These abstracts often

has 1,000 questions), and information extraction (e.g. Sci-
ERC (Luan et al., 2018) has 500 annotated abstracts).
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Figure 3: Most frequently occurring Medical Subject
Headings (MeSH) terms (y-axis) among cited abstracts.
MeSH is a controlled vocabulary used for indexing ar-
ticles in PubMed. Topics range from clinical trial re-
ports (“Humans”, “Risk Factors”) to molecular biology
(“Cell Line”, “RNA”).

discuss similar topics to the evidence documents,
increasing the difficulty of abstract retrieval and
making our metrics more accurately reflect the sys-
tem’s performance on a large research corpus.

3.2 Claim writing

Annotation Annotators are shown a source citance
in the context of an article, and are asked to write up
to three claims based on the content of the citance;
see Appendix C.2 for an example. This results in
natural claims because the annotator does not see
the cited article’s abstract – the cited abstract – at
the time of claim writing. Annotators are asked
to skip citances that do not make statements about
specific scientific findings.

The claim writers included four experts with
background in scientific NLP, fifteen undergradu-
ates studying the life sciences, and four graduate
students (doctoral or medical) in the life sciences.
Detailed information on the annotator training pro-
cess can be found in Appendix C.3. The claim-
writing interface is shown in Appendix D.

Claim negation Unless the authors of the source
citance were mistaken, cited articles should pro-
vide supporting evidence for the claims made in
a citance. To obtain examples where an abstract
REFUTES a claim, an NLP expert wrote negations
of existing claims, taking precautions not to bias
the negations by using obvious keywords like “not”
(Schuster et al., 2019; Gururangan et al., 2018). In
§6.1, we demonstrate that a “claim-only” verifi-

cation model performs poorly, suggesting that the
negation process did not introduce severe artifacts.

3.3 Claim verification

Annotation For each claim, all of the claim’s cited
abstracts are annotated for evidence. Annotators
are shown a single claim - cited abstract pair, and
asked to label the pair as SUPPORTS, REFUTES, or
NOINFO. Although our task definition allows for a
single claim to be both supported and refuted (by
different abstracts) – an occurrence we observe on
real-world COVID-19 claims (§6.3) – this never
occurs in our dataset. Each claim has a single label.
Counts for each label are shown in Table 2a. Over-
all, the annotators found evidence in 63% of cited
abstracts. If the annotator assigns a SUPPORTS or
REFUTES label, they must also identify all ratio-
nales as defined in §2. Table 2b provides statistics
on the number of sentences per rationale, the num-
ber of rationales per claim / abstract pair, and the
number of evidence abstracts per claim. No ab-
stract has more than 3 rationales for a given claim,
and all rationales consist of at most three sentences.
Rationales in SCIFACT are mutually exclusive. 28
rationales contain non-contiguous sentences.

The verifiers included three NLP experts, five
life science undergraduates, and five graduate stu-
dents studying life sciences. Annotators verified
claims that they did not write themselves. Annota-
tion guidelines are provided in Appendix D.

SCIFACT claims are verified against abstracts
rather than full articles since (1) abstracts can be
annotated more scalably, (2) evidence is found in
the abstract in more than 60% of cases, and (3) pre-
vious attempts at full-document annotation suffered
from low annotator agreement (§7).

Quality We assign 232 claim-abstract pairs for in-
dependent re-annotation. The label agreement is
0.75 Cohen’s κ, comparable with the 0.68 Fleiss’
κ reported in Thorne et al. (2018), and 0.70 Co-
hen’s κ reported in Hanselowski et al. (2019). To
measure rationale agreement, we treat each sen-
tence as either classified as “part of a rationale” or
“not part of a rationale” and compute sentence-level
agreement. The resulting Cohen’s κ is 0.71.

4 The SCIFACT task

Task Formulation The inputs to our task are a sci-
entific claim c and a corpus of abstracts A. All ab-
stracts a ∈ A are labeled as y(c, a) ∈ {SUPPORTS,
REFUTES, NOINFO } with respect to a claim c.
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Fold SUPPORTS NOINFO REFUTES All

Train 332 304 173 809
Dev 124 112 64 300
Test 100 100 100 300

All 556 516 337 1409

(a) Distribution of claim labels in SCIFACT.

0 1 2 3+

Cited abstracts per claim - 1278 86 45
Evidence abstracts per claim 516 830 37 26
Rationales per abstract - 552 290 153
Sentences per rationale - 1542 92 11

(b) Evidence counts at various levels of granularity. For exam-
ple, Column 2 of the row “Rationales / abstract” indicates that
290 claim / abstract pairs are supported by 2 distinct rationales.

Table 2: Statistics on claim labels, and the number of
evidence abstracts and rationales per claim.

The abstracts that either SUPPORT or REFUTE c
are referred to as evidence abstracts for c, denoted
as E(c). Each evidence abstract a ∈ E(c) is an-
notated with rationales. A single rationale Ri is
a collection of sentences {r1(c, a), . . . , rm(c, a)},
where m is the number of sentences in rationale Ri.
We denote the set of all rationales as R(c, a) =
{R1(c, a), . . . , Rn(c, a)}.

Given a claim c and a corpus A, the system
must predict a set of evidence abstracts Ê(c). For
each abstract a ∈ Ê(c), it must predict a label
ŷ(c, a), and a collection of rationale sentences
Ŝ(c, a) = {ŝ1(c, a), . . . , ŝ`(c, a)}. Note that al-
though the gold annotations may contain multiple
separate rationales, to simplify the prediction task
we only require the model to predict a single col-
lection of rationale sentences; these sentences may
encompass multiple gold rationales.

Task Evaluation We evaluate the task at two levels
of granularity. For abstract-level evaluation, we
assess the model’s ability to identify the abstracts
that support or refute the claim. For sentence-level
evaluation, we evaluate the model’s performance
at identifying the sentences sufficient to justify the
abstract-level predictions. We conduct evaluations
in both the “Open” FEVER-style (Thorne et al.,
2018) setting where the evidence abstracts must
be retrieved, and the “Oracle abstract” ERASER-
style (DeYoung et al., 2020a) setting where the
gold evidence abstracts E(c) are provided.

Abstract-level evaluation is inspired by the
FEVER score. Given a claim c, a predicted evidence
abstract a ∈ Ê(c) is correctly labeled if (1) a is a

gold evidence abstract for c, and (2) The predicted
label is correct: ŷ(c, a) = y(c, a). It is correctly
rationalized if, in addition, the predicted rationale
sentences contain a gold rationale, i.e., there exists
some gold rationale Ri(c, a) ⊆ Ŝ(c, a).

Like FEVER, which limits the maximum number
of predicted rationale sentences to five, SCIFACT

limits to three predicted rationale sentences. Over-
all performance is measured by the micro-F1 of
the precision and recall over the correctly-labeled
and correctly-rationalized evidence abstracts. We
refer to these evaluations as AbstractLabel-Only and
AbstractLabel+Rationale, respectively.

Sentence-level evaluation measures performance
in identifying individual rationale sentences. Un-
like the abstract-level metrics, this evaluation pe-
nalizes the prediction of extra rationale sentences.

A predicted rationale sentence ŝ(c, a) is cor-
rectly selected if (1) It is a member of some gold
rationale Ri(c, a), (2) all other sentences from the
same gold rationale Ri(c, a) are among the pre-
dicted Ŝ(c, a), and (3) ŷ(c, a) 6= NOINFO4. It is
correctly labeled if, in addition, the abstract a is
correctly labeled: ŷ(c, a) = y(c, a).

Overall performance is measured by the micro-
F1 of the precision and recall of correctly-selected
and correctly-labeled rationale sentences, denoted
SentenceSelection-Only and SentenceSelection+Label.
For sentence-level evaluation, we do not limit the
number of predicted rationale sentences, since the
evaluation penalizes models that over-predict.

5 VERISCI: Baseline model

We develop a baseline (referred to as VERISCI) that
takes a claim c and corpus A as input, identifies
evidence abstracts Ê(c), and predicts a label ŷ(c, a)
and rationale sentences Ŝ(c, a) for each a ∈ Ê(c).
Following the “BERT-to-BERT” model presented
in DeYoung et al. (2020a); Soleimani et al. (2019),
VERISCI is a pipeline of three components:
1. ABSTRACTRETRIEVAL retrieves k abstracts

with highest TF-IDF similarity to the claim.
2. RATIONALESELECTION identifies rationale

sentences Ŝ(c, a) for each abstract.
3. LABELPREDICTION makes the final label pre-

diction ŷ(c, a).
Rationale selection Given a claim c and ab-
stract a, we train a model to predict zi ,

4Condition (3) eliminates rationale sentences which were
identified by the rationale selector, but proved insufficient to
justify a final SUPPORTS / REFUTES decision
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1[ai is a rationale sentence] for each sentence ai
in a. For each sentence, we encode the concate-
nated sequence wi = [ai, SEP, c] using a BERT-
style language model and predict a score z̃i =
σ[f(CLS(wi))], where σ is the sigmoid function,
f is a linear layer and CLS(wi) is the CLS token
from the encoding of wi. We train the model on
pairs of claims and their cited abstracts and min-
imize cross-entropy loss between zi and z̃i. For
each claim, we use cited abstracts labeled NOINFO,
as well as non-rationale sentences from abstracts
labeled SUPPORTS and REFUTES as negative ex-
amples. To make predictions, we select all sen-
tences ai with z̃i > t as rationale sentences, where
t ∈ [0, 1] is tuned on the dev set (Appendix A.1).

Label prediction Sentences identified by the ra-
tionale selector are passed to a separate BERT-
based model to make the final labeling decision.
Given a claim c and abstract a, we concatenate
the claim and the predicted rationale sentences
u = [ŝ1(c, a), . . . ŝ`(c, a), SEP, c]5, and predict
ỹ(c, a) = φ[f(CLS(u))], where φ is the softmax
function, and f is a linear layer with three outputs
representing the {SUPPORTS, REFUTES, NOINFO

} labels. We minimize the cross-entropy loss be-
tween ỹ(c, a) and the true label y(c, a).

We train the model on pairs of claims and their
cited abstracts using gold rationales as input. For
cited abstracts labeled NOINFO, we choose the
k sentences from the cited abstract with high-
est TF-IDF similarity to the claim as input ra-
tionales. For prediction, we use the predicted
rationale sentences Ŝ(c, a) as input and predict
ŷ(c, a) = argmax ỹ(c, a). NOINFO is predicted
for abstracts with no rationale sentences.

We experimented with a label prediction model
which encodes entire abstracts via the Longformer
(Beltagy et al., 2020), and makes predictions us-
ing the document-level CLS token. Performance
was not competitive with our pipeline setup, likely
because the label predictor struggles to identify
relevant information when given full abstracts.

6 Experiments

In our experiments, we (1) analyze the performance
of each individual component of VERISCI, (2) eval-
uate full task performance in both the “Oracle ab-
stract” and “Open” settings, (3) present promising
results verifying claims about COVID-19 using

5We truncate the rationale input if it exceeds the BERT
token limit. c is never truncated.

RATIONAL-SELECT. LABEL-PRED.

Training data P R F1 ACC.

FEVER 41.5 57.9 48.4 67.6
UKP Snopes 42.5 62.3 50.5 71.3
SCIFACT 73.7 70.5 72.1 75.7
FEVER + SCIFACT 72.4 67.2 69.7 81.9

Sentence encoder P R F1 ACC.

SCIBERT 74.5 74.3 74.4 69.2
BioMedRoBERTa 75.3 69.9 72.5 71.7
RoBERTa-base 76.1 66.1 70.8 62.9
RoBERTa-large 73.7 70.5 72.1 75.7

Model inputs P R F1 ACC.

Claim-only - - - 44.5
Abstract-only 60.1 60.9 60.5 53.3

Table 3: Comparison of different training datasets, en-
coders, and model inputs for RATIONALESELECTION
and LABELPREDICTION, evaluated on the SCIFACT
dev set. The claim-only model cannot select rationales.

VERISCI, and (4) discuss some modeling chal-
lenges presented by the dataset.

6.1 Pipeline components

We examine the effects of different training
datasets, sentence encoders, and model inputs on
the performance of the RATIONALESELECTION

and LABELPREDICTION modules. The RATIO-
NALESELECTION module is evaluated on its ability
to select rationale sentences given gold abstracts6.
The LABELPREDICTION module is evaluated on its
3-way label classification accuracy given gold ratio-
nales from cited abstracts. Cited abstracts labeled
NOINFO are included in the evaluation. These ab-
stracts have no gold rationale sentences; as in §5,
we provide the k most similar sentences from the
abstract as input (more details in Appendix A).

Training Data We train on (1) FEVER, (2) UKP
Snopes, (3) SCIFACT, and (4) FEVER pretraining
followed by SCIFACT fine-tuning. RoBERTa-large
(Liu et al., 2019) is used as the sentence encoder.

Sentence encoder We fine-tune SCIBERT (Belt-
agy et al., 2019), BioMedRoBERTa (Gururangan
et al., 2020), RoBERTa-base, and RoBERTa-large.
SCIFACT is used as training data.

Model Inputs We examine the performance of
“claim-only” and “abstract-only” models trained
on SCIFACT, using RoBERTa-large as the sentence
encoder. The claim-only model makes label predic-

6Our FEVER-trained RATIONALESELECTION module
achieves 79.9 sentence-level F1 on the FEVER test set, virtu-
ally identical to 79.6 reported in DeYoung et al. (2020a).
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Sentence-level Abstract-level
Selection-Only Selection+Label Label-Only Label+Rationale

Retrieval Model P R F1 P R F1 P R F1 P R F1

Oracle
abstract

Oracle rationale 1 100.0 80.5 89.22.1 89.6 72.2 79.93.0 90.1 77.5 83.32.4 90.1 77.5 83.32.4

Zero-shot 2 42.5 45.1 43.82.0 36.1 38.4 37.22.3 86.9 53.6 66.33.1 67.9 41.9 51.83.4
VERISCI 3 76.1 63.8 69.42.6 66.5 55.7 60.63.1 87.3 65.3 74.72.8 84.9 63.5 72.72.9

Open

Oracle rationale 4 100.0 56.5 72.23.3 87.6 49.5 63.23.7 88.9 54.1 67.23.2 88.9 54.1 67.23.2

Zero-shot 5 28.7 37.6 32.52.3 23.7 31.1 26.92.3 56.0 42.3 48.23.3 42.3 32.0 36.43.3
VERISCI 6 45.0 47.3 46.13.0 38.6 40.5 39.53.0 47.5 47.3 47.43.1 46.6 46.4 46.53.1

Table 4: Test set performance on SCIFACT, according to the metrics from §4. For the “Oracle abstract” rows,
the system is provided with gold evidence abstracts. “Oracle rationale” rows indicate that the gold rationales are
provided as input. “Zero-shot” indicates zero-shot performance of a verification system trained on FEVER. Addi-
tionally, standard deviations are reported as subscripts for all F1 scores. See Appendix B for standard deviations
on all reported metrics.

tions based on the claim text alone, without access
to evidence abstracts. The abstract-only model
selects rationale sentences and makes label predic-
tions without access to the claim.

Results The results are shown in Table 3. For LA-
BELPREDICTION, the best performance is achieved
by training first on the large FEVER dataset and
then fine-tuning on the smaller in-domain SCIFACT

training set. To understand the benefits of FEVER

pretraining, we examined the claim / evidence pairs
where the FEVER + SCIFACT- trained model made
correct predictions but the SCIFACT- trained model
did not. In 36 / 44 of these cases, the SCIFACT-
trained model predicts NOINFO. Thus pretraining
on FEVER appears to improve the model’s abil-
ity to recognize textual entailment relationships
between evidence and claim – particularly relation-
ships indicated by non-domain-specific cues like
“is associated with” or “has an important role in”.

For RATIONALESELECTION, training on SCI-
FACT alone produces the best results. We exam-
ined the rationales that the SCIFACT- trained model
identified but the FEVER- trained model missed,
and found that they generally contain science-
specific vocabulary. Thus, training on additional
out-of-domain data provides little benefit.

RoBERTa-large exhibits the strongest perfor-
mance on label prediction, while SCIBERT has
a slight edge on rationale selection. The “claim-
only” model exhibits very poor performance, which
provides some reassurance that the claim negation
procedure described in §3.2 does not introduce ob-
vious statistical artifacts. Similarly, the poor perfor-
mance of the “abstract-only” model indicates that
the model needs access to the claim being verified

in order to identify relevant evidence.

6.2 Full task

Experimental setup Based on the results from
§6.1, we use the RATIONALESELECTION module
trained on SCIFACT only, and the LABELPREDIC-
TION module trained on FEVER + SCIFACT for our
final end-to-end system VERISCI. Although SCIB-
ERT performs slightly better on rationale selection,
using RoBERTa-large for both RATIONALESELEC-
TION and LABELPREDICTION gave the best full-
pipeline performance on the dev set, so we use
RoBERTa-large for both components. For the AB-
STRACTRETRIEVAL module, the best dev set full-
pipeline performance was achieved by retrieving
the top k = 3 documents.

Model comparisons We report performance of
three model variants. For the “Oracle rationale”
setting, the RATIONALESELECTION module is re-
placed by an oracle which outputs gold rationales
for correctly retrieved documents, and no rationales
for incorrect retrievals. The “Zero-shot” setting re-
ports the zero-shot generalization performance of
a model trained on FEVER (the results on UKP
Snopes were slightly worse). VERISCI reports the
performance of our best system.

Results The results are shown in Table 4. In the
oracle abstract setting, the abstract-level F1 scores
are roughly comparable to label classification accu-
racies, and the AbstractLabel+Rationale score in Row
3 implies an end-to-end classification accuracy of
roughly 70%, given gold abstracts.

Access to in-domain data during training
clearly improves performance. Despite the
small size of SCIFACT, training on these data
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Reasoning type Example

Science
background

Claim: Rapamycin slows aging in fruit flies.
Evidence: . . . feeding rapamycin to adult Drosophila produces life span extension . . .
Gold Verdict: SUPPORTS
Reasoning: Drosophila is a type of fruit fly.

Directionality

Claim: Inhibiting glucose-6-phospate dehydrogenase impairs lipogenesis
Evidence: . . . suppression of 6PGD increased lipogenesis
Gold Verdict: REFUTES
Reasoning: A decrease (not increase) in lipogenesis would indicate lipogenesis impairment.

Numerical
reasoning

Claim: Bariatric surgery improves resolution of diabetes.
Evidence: Strong associations were found between bariatric surgery and the resolution of T2DM,

with a HR of 9.29 (95% CI 6.84-12.62)...
Gold Verdict: SUPPORTS
Reasoning: A HR (hazard ratio) that is greater than 1 with 95% confidence indicates improvement.

Cause and
effect

Claim: Major vault protein (MVP) functions to decrease tumor aggression.
Evidence: Knockout of MVP leads to miR-193a accumulation...inhibiting tumor progression
Gold Verdict: REFUTES
Reasoning: Knocking out (removing) MVP inhibits tumor progression → MVP increases tumor

aggression.

Coreference

Claim: Low saturated fat diets have adverse effects on the development of infants
Evidence: Neurological development of children in the intervention group was at least as good as ...

the control group
Gold Verdict: REFUTES
Reasoning: The intervention group in this study was placed on a low saturated fat diet.

Table 5: Reasoning types required to verify SCIFACT claims which are classified incorrectly by our modeling
baseline. Words crucial for correct verification are highlighted.

leads to relative improvements of 47% on
open SentenceSelection+Label, and 28% on open
AbstractLabel+Rationale over FEVER alone (Row 6 vs.
Row 5). The three pipeline components make simi-
lar contributions to the overall model error. Replac-
ing RATIONALESELECTION with an oracle leads
to a roughly 20-point rise in SentenceSelection+Label
F1 (Row 6 vs. Row 4). Replacing ABSTRACTRE-
TRIEVAL with an oracle as well leads to a gain of
roughly 20 more points (Row 4 vs. Row 1).

Nearly all correctly-labeled abstracts are sup-
ported by at least one rationale. There is only a two-
point difference in F1 between AbstractLabel-Only
and AbstractLabel+Rationale in the oracle setting
(Row 3), and a one-point difference in the
open setting (Row 6). The differences between
SentenceSelection-Only and SentenceSelection+Label are
larger, caused by examples where the model finds
the evidence but fails to predict its relationship to
the claim. We examine these in §6.4.

We evaluate the statistical robustness of our re-
sults by generating 10,000 bootstrap-resampled ver-
sions of the test set (Dror et al., 2018) and com-
puting the standard deviation of all performance
metrics. Table 4 shows the standard deviations in
F1 score. Uncertainties on all metrics for both the
dev and test set can be found in Appendix B. The re-

sults indicate that the observed differences in model
performance are statistically robust and cannot be
attributed to random variation in the dataset.

6.3 Verifying claims about COVID-19

We conduct exploratory experiments using our sys-
tem to verify claims concerning COVID-19. We
tasked a medical student to write 36 COVID-related
claims. For each claim c, we used VERISCI to
predict evidence abstracts Ê(c). The annotator ex-
amined each (c, Ê(c)) pair. A pair was labeled
plausible if Ê(c) was nonempty, and at least half of
the evidence abstracts in Ê(c) were judged to have
reasonable rationales and labels. For 23 / 36 claims,
the response of VERISCI was deemed plausible by
our annotator, demonstrating that VERISCI is able
to successfully retrieve and classify evidence in
many cases. Two examples are shown in Table 1.
In both cases, our system identifies both supporting
and refuting evidence.

6.4 Error analysis

To better understand the errors made by VERISCI,
we conduct a manual analysis of test set predictions
where an evidence abstract was correctly retrieved,
but where the model failed to identify any relevant
rationales or predicted an incorrect label. We iden-
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tify five modeling capabilities required to correct
these mistakes (Table 5 provides examples):
Science background includes knowledge of
domain-specific lexical relationships.
Directionality requires understanding increases or
decreases in scientific quantities.
Numerical reasoning involves interpreting numer-
ical or statistical findings.
Cause and effect requires reasoning about coun-
terfactuals.
Coreference involves drawing conclusions using
context stated outside of a rationale sentence.

7 Related work

Fact checking and rationalized NLP models
Fact-checking datasets include PolitiFact (Vla-
chos and Riedel, 2014), Emergent (Ferreira and
Vlachos, 2016), LIAR (Wang, 2017), SemEval
2017 Task 8 RumorEval (Derczynski et al., 2017),
Snopes (Popat et al., 2017), CLEF-2018 Check-
That! (Barrón-Cedeño et al., 2018), Verify (Baly
et al., 2018), Perspectrum (Chen et al., 2019),
FEVER (Thorne et al., 2018), and UKP Snopes
(Hanselowski et al., 2019). Hanselowski et al.
(2019) provides a thorough review. To our knowl-
edge, there are no existing data sets for scientific
claim verification. We refer to our task as “claim
verification” rather than “fact-checking” to empha-
size that our focus is to help researchers make sense
of scientific findings, not to counter disinformation.

Fact-checking is one of a number of tasks where
a model is required to justify a prediction via ra-
tionales from the source document. The ERASER
dataset (DeYoung et al., 2020a) provides a suite
of benchmark datasets (including SCIFACT) for
evaluating rationalized NLP models.

Related scientific NLP tasks The citation contex-
tualization task (Cohan et al., 2015; Jaidka et al.,
2017) is to identify spans in a cited document that
are relevant to a particular citation in a citing doc-
ument. Unlike SCIFACT, these citations are not
re-written into atomic claims and are therefore
more difficult to verify. Expert annotators achieved
very low (21.7%) inter-annotator agreement on the
BioMedSumm dataset (Cohen et al., 2014), which
contains 314 citations referencing 20 papers.

Biomedical question answering datasets include
BioASQ (Tsatsaronis et al., 2015) and PubMedQA
(Jin et al., 2019), which contain 855 and 1,000
“yes / no” questions respectively (Gu et al., 2020).
Claim verification and question answering are both-

knowledge intensive tasks which require an under-
standing of the relationship between an input query
and relevant supporting text.

Automated evidence synthesis (Marshall and
Wallace, 2019; Beller et al., 2018; Tsafnat et al.,
2014; Marshall et al., 2017) seeks to automate the
process of creating systematic reviews of the med-
ical literature7 – for instance, by extracting PICO
snippets (Nye et al., 2018) and inferring the out-
comes of clinical trials (Lehman et al., 2019; DeY-
oung et al., 2020b). We hope that systems for claim
verification will serve as components in future evi-
dence synthesis frameworks.

8 Conclusion and future work

Claim verification allows us to trace the sources
and measure the veracity of scientific claims. These
abilities have emerged as particularly important
in the context of the current pandemic, and the
broader reproducibility crisis in science. In this
article, we formalize the task of scientific claim
verification, and release a dataset (SCIFACT) and
models (VERISCI) to support work on this task.
Our results indicate that it is possible to train mod-
els for scientific fact-checking and deploy them
with reasonable efficacy on real-world claims re-
lated to COVID-19.

Scientific claim verification presents a number
of promising avenues for research on models capa-
ble of incorporating background information, rea-
soning about scientific processes, and assessing
the strength and provenance of various evidence
sources. This last challenge will be especially cru-
cial for future work that seeks to verify scientific
claims against sources other than the research lit-
erature – for instance, social media and the news.
We hope that the resources presented in this pa-
per encourage future research on these important
challenges, and help facilitate progress toward the
broader goal of scientific document understanding.
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Suwaileh, Lluı́s Màrquez i Villodre, Pepa
Atanasova, Wajdi Zaghouani, Spas Kyuchukov,
Giovanni Da San Martino, and Preslav Nakov.
2018. Overview of the clef-2018 checkthat! lab on
automatic identification and verification of political
claims. task 2: Factuality. In CLEF.

Elaine Beller, Justin Clark, Guy Tsafnat, Clive Elliott
Adams, Heinz Diehl, Hans Lund, Mourad Ouzzani,
Kristina Thayer, James Thomas, Tari Turner, J. S.
Xia, Karen A. Robinson, and Paul P Glasziou. 2018.
Making progress with the automation of systematic
reviews: principles of the international collabora-
tion for the automation of systematic reviews (icasr).
Systematic Reviews, 7.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:
A pretrained language model for scientific text. In
EMNLP.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
ArXiv, abs/2004.05150.

Taylor Berg-Kirkpatrick, David Burkett, and Dan
Klein. 2012. An empirical investigation of statisti-
cal significance in nlp. In EMNLP.

Sihao Chen, Daniel Khashabi, Wenpeng Yin, Chris
Callison-Burch, and Dan Roth. 2019. Seeing things
from a different angle: Discovering diverse perspec-
tives about claims. In NAACL.

Arman Cohan, Luca Soldaini, and Nazli Goharian.
2015. Matching citation text and cited spans in
biomedical literature: a search-oriented approach.
In NAACL.

Kevin Bretonnel Cohen, Hoa Trang Dang, Anita
de Waard, Prabha Yadav, and Lucy Vanderwende.
2014. Tac 2014 biomedical summarization track.
https://tac.nist.gov/2014/BiomedSumm/.

Leon Derczynski, Kalina Bontcheva, Maria Liakata,
Rob Procter, Geraldine Wong Sak Hoi, and Arkaitz
Zubiaga. 2017. SemEval-2017 task 8: RumourEval:
Determining rumour veracity and support for ru-
mours. In SemEval.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020a. Eraser: A benchmark to
evaluate rationalized nlp models. In ACL.

Jay DeYoung, Eric Lehman, Ben Nye, Iain James
Marshall, and Byron C. Wallace. 2020b. Evi-
dence inference 2.0: More data, better models. In
BioNLP@ACL.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The hitchhiker’s guide to testing statis-
tical significance in natural language processing. In
ACL.

Bradley Efron and Robert Tibshirani. 1993. An intro-
duction to the bootstrap.

William Ferreira and Andreas Vlachos. 2016. Emer-
gent: a novel data-set for stance classification. In
NAACL.

Yu Gu, Robert Tinn, Hao Cheng, M. Lucas,
Naoto Usuyama, Xiaodong Liu, Tristan Nau-
mann, Jianfeng Gao, and Hoifung Poon. 2020.
Domain-specific language model pretraining for
biomedical natural language processing. ArXiv,
abs/2007.15779.

Suchin Gururangan, Ana Marasovic, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
ACL.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R. Bowman, and
Noah A. Smith. 2018. Annotation artifacts in nat-
ural language inference data. In NAACL.

Andreas Hanselowski, Christian Stab, Claudia Schulz,
Zile Li, and Iryna Gurevych. 2019. A richly anno-
tated corpus for different tasks in automated fact-
checking. In CoNLL.

Kokil Jaidka, Muthu Kumar Chandrasekaran, Devan-
shu Jain, and Min-Yen Kan. 2017. The cl-scisumm
shared task 2017: Results and key insights. In
BIRNDL@JCDL.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W.
Cohen, and Xinghua Lu. 2019. Pubmedqa: A
dataset for biomedical research question answering.
In EMNLP.

Eric Lehman, Jay DeYoung, Regina Barzilay, and By-
ron C. Wallace. 2019. Inferring which medical
treatments work from reports of clinical trials. In
NAACL.

Tao Lei, Regina Barzilay, and Tommi S. Jaakkola.
2016. Rationalizing neural predictions. In ACL.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel S. Weld. 2020. S2ORC: The Seman-
tic Scholar Open Research Corpus. In ACL.

https://tac.nist.gov/2014/BiomedSumm/
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/N16-1138
https://doi.org/10.18653/v1/N16-1138
https://arxiv.org/abs/1911.02782
https://arxiv.org/abs/1911.02782


7544

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of enti-
ties, relations, and coreference for scientific knowl-
edge graph construction. In EMNLP.
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A Model implementation details

All models are implemented using the Huggingface
Transformers package (Wolf et al., 2019).

A.1 Parameters for the final VERISCI system

For the ABSTRACTRETRIEVAL module, VERISCI

retrieves the top k = 3 documents ranked by TF-
IDF similarity using unigram + bigram features.
These parameters are tuned on the SCIFACT devel-
opment set.

When making predictions using the RATIO-
NALESELECTION module described in §5, we find
that the usual decision rule of predicting ẑi = 1
when z̃i ≥ 0.5 works well for models trained on
SCIFACT. However, for models trained on FEVER

and UKP Snopes, we achieve better performance
by tuning the classification threshold t, such that
ẑi = 1 when z̃i ≥ t, on the SCIFACT dev set.
The best threshold was t = 0.025 when training
on FEVER, and t = 0.75 when training on UKP
Snopes.

A.2 Training the RATIONALESELECTION
module

We experiment with various learning rates when
training SCIBERT, BioMedRoBERTa, RoBERTa-
base, and RoBERTa-large. Below we describe the
setting for training RoBERTa-large.

For models trained on SCIFACT, we use an ini-
tial learning rate of 1e-5 on the transformer base
and 1e-3 on the linear layer. For FEVER + SCI-
FACT, the learning rate is set to 1e-5 for the entire
model for pre-training on FEVER and fine-tuning
on SCIFACT. We use a batch size of 256 through
gradient accumulation and apply cosine learning
rate decay over 20 epochs to find the best perform-
ing model on the dev set.

For models trained on FEVER, we set the learn-
ing rate to 5e-6 for the transformer base and 5e-5
for the linear layer. For models trained on UKP
Snopes, we set the learning rate 1e-5 for the trans-
former base and 1e-4 for the linear layer. We find
that these learning rates help the models converge.
We only train the model for 3 epochs on FEVER

and 5 epochs on UKP Snopes because they are
larger datasets and the models converged within
early epochs.

A.3 Training the LABELPREDICTION
module

We adopt similar settings as we used for the RA-
TIONALESELECTION module and only change the
learning rate to 1e-5 for the transformer base and
1e-4 for the linear layer for models trained on SCI-
FACT, FEVER, and UKP Snopes. When training on
claim / cited abstract pairs labeled NOINFO, we use
the k sentences in the abstract with greatest simi-
larity to the claim as rationales (§5). k is sampled
from {0, 1} with uniform probability.

A.4 Additional training details
All models are trained using a single Nvidia P100
GPU on Google Colabortoary Pro platform.8 For
the RATIONALESELECTION module, it takes about
150 minutes to train on SCIFACT for 20 epochs.
120 minutes on UKP Snopes for 5 epochs, and 700
minutes on FEVER for 3 epochs. For the LABEL-
PREDICTION module, it takes about 130 minutes
to train on SCIFACT for 20 epochs, 160 minutes
on UKP Snopes for 5 epochs, and 640 minutes on
FEVER for 3 epochs.

A.5 Hyperparameter search
The learning rate, batch size, and number of epochs
are the most important hyperparameters. We per-
form manual tuning and select the hyperparameters
that produce the highest F1 on the development
set. For the learning rate, we experiment with 1e-3,
1e-4, 5e-5, 1e-5, and 5e-6. For batch size, we ex-
periment with 64 and 256. The number of epochs
are cutoff after the model converges.

B Statistical analysis

We assess the uncertainty in the results reported
in the main results (Table 4) using a simple boot-
strap approach (Dror et al., 2018; Berg-Kirkpatrick
et al., 2012; Efron and Tibshirani, 1993). Given
our test set with ntest = 300 claims, we gener-
ate nboot = 10, 000 bootstrap-resampled test sets
by resampling (uniformly, with replacement) ntest
claims from the test set. For each resampled test set,
we compute the metrics in Table 4. Table 6 reports
the mean and standard deviation of these metrics,
computed over the bootstrap samples. Table 7 re-
ports dev set metrics. Our conclusion that training
on SCIFACT improves performance is robust to the
uncertainties presented in these tables.

8https://colab.research.google.com/

https://colab.research.google.com/
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Sentence-level
Selection-Only Selection+Label

Retrieval Model Row P R F1 P R F1

Oracle
abstract

Oracle rationale 1 100.00.0 80.53.3 89.22.1 89.62.7 72.23.7 79.93.0

Zero-shot 2 42.62.2 45.23.2 43.82.0 36.22.5 38.43.0 37.22.3
VERISCI 3 76.22.9 63.93.6 69.42.6 66.53.4 55.73.7 60.63.1

Open

Oracle rationale 4 100.00.0 56.64.0 72.23.3 87.63.5 49.53.9 63.23.7

Zero-shot 5 28.72.3 37.63.4 32.52.3 23.82.3 31.13.1 26.92.3
VERISCI 6 45.03.0 47.43.8 46.13.0 38.53.0 40.63.6 39.53.0

(a) Sentence-level results.

Abstract-level
Label-Only Label+Rationale

Retrieval Model Row P R F1 P R F1

Oracle
abstract

Oracle rationale 1 90.12.2 77.52.8 83.32.4 90.12.2 77.52.8 83.32.4

Zero-shot 2 86.92.9 53.63.4 66.33.1 67.93.9 41.93.2 51.83.4
VERISCI 3 87.32.6 65.33.2 74.72.8 84.92.8 63.53.2 72.62.9

Open

Oracle rationale 4 88.92.7 54.13.5 67.23.2 88.92.7 54.13.5 67.23.2

Zero-shot 5 56.03.9 42.33.4 48.23.3 42.34.0 32.03.2 36.43.3
VERISCI 6 47.53.3 47.33.5 47.43.1 46.63.3 46.43.5 46.43.1

(b) Abstract-level results

Table 6: Test set results as in Table 4, reporting mean and standard deviation over 10,000 bootstrap samples.
Standard deviations are reported as subscripts. Some means reported here are slightly different from Table 4 due
to sampling variability.

Sentence-level
Selection-Only Selection+Label

Retrieval Model Row P R F1 P R F1

Oracle
abstract

Oracle rationale 1 100.00.0 81.93.2 90.01.9 91.42.5 74.93.6 82.32.9

Zero-shot 2 40.72.1 48.13.4 44.02.1 36.12.5 42.63.4 39.02.5
VERISCI 3 79.42.7 59.03.6 67.72.8 71.43.5 53.03.6 60.83.3

Open

Oracle rationale 4 100.00.0 58.44.3 73.73.4 90.23.3 52.74.3 66.43.9

Zero-shot 5 28.62.0 38.53.6 32.82.3 24.82.2 33.43.4 28.42.4
VERISCI 6 52.53.5 43.83.7 47.73.2 46.93.7 39.23.6 42.63.2

(a) Sentence-level results.

Abstract-level
Label-Only Label+Rationale

Retrieval Model Row P R F1 P R F1

Oracle
abstract

Oracle rationale 1 91.42.2 76.13.0 83.02.5 91.42.2 76.13.0 83.02.5

Zero-shot 2 88.92.8 58.33.7 70.43.2 69.23.9 45.43.5 54.83.5
VERISCI 3 91.02.3 67.43.3 77.42.7 85.22.9 63.23.5 72.53.1

Open

Oracle rationale 4 91.02.6 53.13.8 67.03.4 91.02.6 53.13.8 67.03.4

Zero-shot 5 52.73.7 41.63.7 46.53.4 43.63.7 34.43.5 38.43.3
VERISCI 6 55.43.7 47.53.6 51.03.3 52.63.7 45.13.6 48.53.3

(b) Abstract-level results

Table 7: Dev set results as in Table 4, reporting mean and standard deviation over 10,000 bootstrap samples.
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Journal Count

BMJ 60
Blood 8
Cancer Cell 8
Cell 51
Cell Metabolism 10
Cell Stem Cell 41
Circulation 12
Immunity 33
JAMA 79
Molecular Cell 27
Molecular Systems Biology 5
Nature 29
Nature Cell Biology 26
Nature Communications 19
Nature Genetics 8
Nature Medicine 89
Nature Methods 1
Nucleic Acids Research 10
Plos Biology 36
Plos Medicine 38
Science 7
Science Translational Medicine 2
The Lancet 22

Other 120

Total 741

Table 8: Number of cited documents by journal. Some
co-cited articles (§3.1) come from journals outside our
curated set; these are indicated by “Other”.

C Dataset collection and corpus statistics

C.1 Corpus
Source journals Table 8 shows the number of
cited abstracts from each of our selected journals.
The “Other” category includes “co-cited” (§3.1)
abstracts that came from journals not among our
pre-defined set.

Distractor abstracts In §3.1, we mention how
we increase the size of the corpus by adding dis-
tractor abstracts. The reason why we do not use
the entirety of a large research corpus like S2ORC
as our fact-checking corpus is that doing so would
introduce many false negative retrievals: abstracts
containing evidence relevant to a given claim, but
not mentioned in the claim’s source citance. This
can occur either because the citance authors simply
were not aware of these abstracts, or because the
abstracts were published after the citance was writ-

"Future studies are also warranted to evaluate 
the potential association between WNT5A/PCP 
signaling in adipose tissue and 
atherosclerotic CVD, given the major role that 
IL-6 signaling plays in this condition as 
revealed by large Mendelian randomization 
studies 44, 45 ."

IL-6 signaling plays a major role in 
atherosclerotic cardiovascular disease.

Source citance

Claim

Figure 4: A claim written based on a citance. Mate-
rial unrelated to the citation is removed. The acronym
“CVD” is expanded to “cardiovascular disease”.

ten. These retrievals would be incorrectly marked
wrong by our evaluation metrics.

Distractor abstracts as defined in §3.1 have two
qualities that make them a good addition to the
SCIFACT corpus: (1) They are cited in the same
articles as our evidence abstracts, meaning that
they often discuss similar topics and increase the
difficulty of abstract retrieval methods based on
lexical similarity. (2) The authors of our citances
were aware of the distractor abstracts, and chose
not to mention them in the citances used to generate
claims. This makes them unlikely to be a source of
false negative retrievals.

C.2 Annotation examples

Converting citances to claims Figure 4 shows
an example of a citance re-written as a claim.
The citance discusses the relationship between
“atherosclerotic CVD” and “IL-6”, and cites two pa-
pers (44 and 45) as evidence. To convert to a claim,
the acronym “CVD” is expanded to “cardiovascu-
lar disease”, irrelevant information is removed, and
the claim is written as an atomic factual statement.

Multiple rationales Figure 5 shows a claim sup-
ported by two rationales from the same abstract.
The text of each rationale on its own is sufficient to
entail the claim.

C.3 Annotators and quality control

Claim writing Student claim writers attended an
in-person training session where they were intro-
duced to the task and received in-person feedback
from the four experts. Following training, student
annotators continued writing claims remotely. The
expert annotators monitored claims for quality dur-
ing the remote annotation process, and provided
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Antibiotics can have significant and long-
lasting effects on the gastrointestinal tract 
microbiota, reducing colonization resistance 
against pathogens including Clostridium 
difficile.

Antibiotic induced alterations in the gut 
microbiome reduce resistance against 
Clostridium difficile

Decision: SUPPORTS

Claim

Rationale 1

Our results indicate that antibiotic-mediated 
alteration of the gut microbiome converts the 
global metabolic profile to one that favours
C. difficile germination and growth.

Rationale 2

Figure 5: A claim supported by two rationales from the
same abstract. The text of each rationale on its own
provides sufficient evidence to verify the claim.

feedback when necessary; low-quality claims were
returned to the annotators for re-writing. As a final
check, all submitted claims were proofread (and
edited if necessary) by an undergraduate whose
claims were deemed especially high-quality by the
expert annotators.

Claim negations As mentioned in §3.2, an ex-
pert annotator wrote claim negations to introduce
cases where an abstract REFUTES a claim. The an-
notator skipped claims that could only be negated
by adding obvious triggers like “not”. The ma-
jority of claim negations involved a reversal of
effect direction; for instance “A high microerythro-
cyte count protects against severe anemia” can be
negated as “A high microerythrocyte count raises
vulnerability to severe anemia”.

Claim verification Annotations were performed
remotely through a web interface. Annotators were
required to pass a 10-question “quiz” before an-
notating their own claims. After passing the quiz,
subsequent submissions were reviewed by an NLP
expert until that expert deemed the annotator reli-
able. Approved annotators were then assigned to
review each others’ submissions. In general, grad-
uate students were assigned to review annotations
from undergraduates.

D Annotation interfaces and guidelines

We show a screenshot of the claim writing interface
in Figure 6, and the claim verification interface in
Figure 7. The complete annotation guide for claim
verification is available at the following URL:

https://scifact.s3-us-west-2.amazonaws.

com/doc/evidence-annotation-instructions.

pdf.

https://scifact.s3-us-west-2.amazonaws.com/doc/evidence-annotation-instructions.pdf
https://scifact.s3-us-west-2.amazonaws.com/doc/evidence-annotation-instructions.pdf
https://scifact.s3-us-west-2.amazonaws.com/doc/evidence-annotation-instructions.pdf
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Figure 6: The claim-writing interface. The citation sentence is highlighted in blue on the top left. Additional
context is provided on bottom left. The right side shows two claims that could be written based on this citation
sentence.
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Figure 7: The evidence collection interface.


