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Abstract

In this work, we present a new language
pre-training model TNT (Text Normalization
based pre-training of Transformers) for con-
tent moderation. Inspired by the masking strat-
egy and text normalization, TNT is developed
to learn language representation by training
transformers to reconstruct text from four op-
eration types typically seen in text manipula-
tion: substitution, transposition, deletion, and
insertion. Furthermore, the normalization in-
volves the prediction of both operation types
and token labels, enabling TNT to learn from
more challenging tasks than the standard task
of masked word recovery. As a result, the ex-
periments demonstrate that TNT outperforms
strong baselines on the hate speech classifica-
tion task. Additional text normalization experi-
ments and case studies show that TNT is a new
potential approach to misspelling correction.

1 Introduction

Language model pre-training (self-supervised or
unsupervised learning) has been a popular thread
in Natural Language Understanding (NLP) stud-
ies recently due to its universal representation ca-
pacity (Radford et al., 2018; Devlin et al., 2019;
Radford et al., 2019; Brown et al., 2020). It has
been thus widely used in a multitude of language
processing tasks such as named entity recognition,
sentiment analysis, question answering and con-
tent moderation (Bodapati et al., 2019). In addi-
tion, the masking pre-training paradigm introduced
by BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019) has been
employed for other tasks such as image processing
(Trinh et al., 2019), optical flow (Liu et al., 2019a),
and audio-visual co-segmentation (Rouditchenko
etal., 2019).

Recently, many variants have been proposed to
further improve the pre-training procedure (Liu

et al., 2019b; Wang et al., 2019; Sun et al., 2019).
They have also advanced the state-of-the-art perfor-
mance on multiple downstream natural language
understanding tasks (Leaderboard) consistently. Al-
most all these studies train language models by
predicting the masked words in different manners.
The underlying mechanism is Cloze task (Taylor,
1953). The pre-training model itself, however, has
not been fully exploited to address complicated yet
feasible tasks. It is reasonable to expect that models
can learn a better universal language representation
if the pre-training procedure can be aligned with
more challenging tasks.

In this article, we attempt to improve the lan-
guage representation by proposing TNT: Text
Normalization based pre-training of Transformers.
TNT enhances the language learning by utilizing
text normalization pre-training objective, inspired
by misspelling correction. Specifically, TNT ran-
domly manipulates tokens from the input text. The
objective is then to reconstruct the original tokens
of the manipulated words based on the context by
predicting both recovery operation type and orig-
inal token labels as illustrated in Fig. 1. Unlike
the masked language model, TNT has to offer two
predictions to reconstruct the original text. In addi-
tion, TNT does not have to be given the prediction
positions in advance. This aligns with the fact
that misspelling correction needs to perform the
position-agnostic prediction for both aspects.

Perpetrators often intentionally obfuscate cer-
tain words about groups, or abusive words, by
misspelling, or leetspeak (e.g.,“f@ggot”,“ph*ck”,
“w.e.t.b.a.c.k.”) (Perea et al., 2008). This could
sidestep the content moderation algorithms easily
as exemplified in Table 5. To assess the learning
capacity of TNT for obfuscated text and reduce the
training cost, it is pre-trained only on one dataset
and then applied to three datasets related to a hate
speech detection task. TNT achieves better results
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compared to strong baselines on these datasets. Fur-
thermore, we conduct an experiment on misspelling
correction, and demonstrates that TNT has appeal-
ing language understanding capacity.

Our contributions are summarized as follows:
(1) we introduce text normalization into the lan-
guage training paradigm, which involves challeng-
ing tasks of predicting both operation types and to-
ken labels; (2) we show that TNT advances the chal-
lenging downstream text classification task, which
benefits the content moderation; (3) TNT offers a
new perspective on misspelling correction.

2 Related Works

BERT (Devlin et al., 2019) is developed by intro-
ducing the bidirectional encoder of well-known
transformers to learn the contextual representation
of text, which is underpinned by the attention mech-
anism (Vaswani et al., 2017). It randomly masks a
certain portion of tokens from the input and then
learns to predict these masked words. This cloze
task based pre-training strategy enables BERT to
advance the state-of-the-art performance on vari-
ous key NLP tasks. It also inspires the commu-
nity with a plethora of subsequent works (Yang
et al., 2019; Sun et al., 2019; Wang et al., 2019;
Liu et al., 2019b). Among them several are closely
related to our approach: XLNet (Yang et al., 2019)
and StructBERT (Wang et al., 2019) improve the
masking by imposing the permutation and shuffling
among words and sentences. StructBERT is one
of the current state-of-the-art algorithms topping
the GLUE leaderboard! (Leaderboard), and is most
similar to this work. TNT differs from StructBERT
in that it is inspired by the need for misspelling cor-
rection, and therefore not only allows permutation
of words, but also deletion and insertion.

For online abusive language moderation, BERT
has also been shown effective and advances the
overall performance largely (Bodapati et al., 2019).
In addition, early works formulate the hate speech
detection as the generic text classification, alterna-
tively focus on certain ethnic groups or building
up blacklists of swear words (Nobata et al., 2016a;
Badjatiya et al., 2017). Misspelling correction is
also a long-standing problem in NLP (Hirst and
Budanitsky, 2005; Bassil, 2012; Islam and Inkpen,

'The General Language Understanding Evaluation
(GLUE) benchmark is a collection of resources for training,
evaluating, and analyzing natural language understanding sys-
tems. It consists of 9 sentence- or sentence-pair language
understanding tasks.

2009) and has been widely used in real-word sce-
narios like word processing system and email spell
checking.

Table 1: Real user manipulated text examples. O, 1,
2 and 3 in the bracket correspond to recovery opera-
tion types: substitution, transposition, deletion and in-
sertion. Identity (4) is also exemplified here for com-
pleteness

Manipulation Text Normalization
substitution I damn sure didn’t vote 8 — b(0)
for the Marxist 8astard!
transposition mario= dumb cutn t< n(1)
deletion Don Lemon is a shthead. 1(3)
insertion Pi—ss on Putin 71 2)
e nnnnn
identity She is a nice lady. c(4)

3 Pre-training

3.1 Architecture

We develop TNT based on a multi-layer bidirec-
tional Transformer network as encoder used in pop-
ular language models like BERT (Devlin et al.,
2019). The well-known masking strategy em-
ployed in BERT and subsequent works is inspired
by cloze task for human-level language understand-
ing. People are required to fill out the omitted
words from a passage based on context.

Unlike the cloze procedure, text normalization
involves more diversified and challenging tasks.
The goal is to rewrite a sentence that was not prop-
erly formed, either due to misspelling, or due to
intentional manipulation. A perpetrator would mis-
spell on purpose, with the intention of evade detec-
tion, through substitution, transposition, deletion
and insertion as exemplified in Table 1. The task
of text normalization is to understand the manipu-
lated sentence, and normalize it to the correct form.
Therefore in TNT, motivated by the task of text
normalization, we propose the pre-training tasks of
substitution, transposition, deletion and insertion.
The masking procedure could be viewed as a spe-
cial case of the text normalization objective, under
substitution.

For substitution (e.g., masking) and insertion,
the corresponding foken label predictions along-
side operation type is required to reconstruct text.
Specifically, we have normalization type o € O =
{0,1,2,3,4}, where o is the operation type with
values O (substitution), 1 (transposition), 2 (dele-
tion), 3 (deletion) or 4 (identity), as exemplified
in Table 1. The normalized token labels [ € V
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Figure 1: Wordpiece illustration of two pre-training subtasks in TNT. “None” means no prediction as the preceding
transposition covers it already. [CLS], [SEP], positional and segment embedding are omitted for brevity.

are ground-truth tokens for corresponding types,
where V is the vocabulary. It is noted that for trans-
position, deletion and identity, no token labels are
required to reconstruct the original text. Thus, we
introduce a special token symbol [NLB] as the
placeholder. Fig. 1 illustrates the generation proce-
dure of pre-training instances and the joint training
of two subtasks.

3.2 Objective

Given an input sequence with manipulated to-
kens, the operation type and token label objec-
tives can be denoted simply as Ogperation

argmaxzi]‘il wflogP (0;(t}; 0) and Ojgpe; =

argmax S whogP(I;|t}; 6;), respectively. t} is
0

the olbserved token from the input sentence. o; and
l; are ground-truth operation type and token label
as illustrated in Fig. 1. M is the maximum length
of input sequence. 8, and 0; are sets of trainable
parameters. wy and wﬁ are weights for operation
type and token label, respectively. The overall pre-
training objective is O = Ogperation + Olapel-

4 Experiments

We perform the hate speech classification and mis-
spelling correction tasks based on the pre-trained

model.

4.1 Datasets

Our primary dataset is extracted from user com-
ments on Yahoo News and Finance, and consisted
of 1.43M labeled comments. Among them, 7% of
the comments are labelled as abusive (including
hatespeech and profanity). The labeled data were
collected as follows: comments that are reported as
“abusive” for any reason by users of Yahoo proper-
ties are sent to in-house trained raters for review,
and the decisions of the raters form the labels. Fur-
ther details can be found at (Nobata et al., 2016b).
In addition, we experimented on two publicly avail-
able hatespeech datasets: Twitter, and Wikipedia
(Wiki) (Agrawal and Awekar, 2018). Wiki set here
is a collection of discussions among editors on talk
pages for improving Wiki articles, which includes
inflammatory posts. The statistics of three datasets
are shown in Table 2.

We split the dataset into train/development/test
sets with a ratio 70%/10%/20%. We generate vo-
cabulary, pretrain the language modeling tasks, and
train the hate speech prediction task using only the
training set. We tune hyper-parameters on the de-
velopment set, and report final results on the test
set.
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Table 2: Basic statistics of datasets

Source | # Abusive | # Clean Total | % Abusive
Yahoo 100,652 | 1,328,486 | 1,429,138 7.04%

Twitter 5,054 11,036 16,090 31.4%
Wiki 13,590 102,274 115,864 11.7%

4.2 Experiment Setups

For TNT pre-training, the substitution follows the
masking setting in BERT. We also set up 5% ma-
nipulation rate for transposition, deletion and in-
sertion, respectively. The rest of the tokens remain
unchanged.

The vocabulary generation, wordpiece tokeniza-
tion, learning rate, weight decay, warm-up and
other training settings follow BERT. The model
size is reduced to quarter of the original BERT. The
maximum length of input sequence M is set to 256.
Parameter scaleis O = (V + M + S) x H + L x
12H? + H? where V, S are vocabulary size
segment type size. H and L are the hidden layer
dimension and the number of transformer block
layers, respectively.

We mainly report two models with wordpiece
and character inputs as detailed in Table 3. The
main difference is that manipulation and normaliza-
tion are performed on different levels. Wordpiece-
and character-level operations are exemplified in
Fig. 1 and Table 1, respectively.

Table 3: Parameter scale and weight settings, character
for misspelling correction. Tuples of w¢ and w! are
weights associated with operation type {0,1,2,3,4}

Model | V | F \S\L\ H | w
Wordpiece| 40K [256|1|3 192 9. 09M (1 1, 1 10) (1.0,0,1,0)
Character |6.8K |512|1|3]192|2.77M|(1,1,1,1,1)|(1,0,0,1,0)

For both TNT models, we run the pre-training
procedure for 64 epochs. We pre-train quarter size
of BERT (wordpiece) and StructBERT (wordpiece)
with the same dataset, epochs and wordpiece vocab-
ulary. In the fine-tuning phase, batch size, the num-
ber of batches and learning rate are set to 64, 10 and
2e-5. For all models, we discard the sentence-pair
training objective.

4.3 Results

For the downstream hate speech classification,
we do fine-tuning on top of aggregate embed-
ding [CLS] of wordpiece TNT as BERT does.
Threshold-free AUC@ROC and AUC @PR? (Davis

2Precision-Recall

Table 4: Performance comparisons on wordpiece TNT
for hate speech classification

Source| Method | AUC@ROC| AUC@PR MCC F1 Score
BERT 93.92 69.56 60.34 61.10
Yahoo |StructBERT] 94.04 70.22 60.66 61.15
TNT  [94.30 (10.26)[70.91 (10.69)|62.04 (11.38)|63.18 (12.03)
BERT 89.52 81.10 62.38 73.99
Twitter|StructBERT 89.96 82.77 62.58 74.09
TNT  [90.42 (10.46)|82.81 (10.04)|63.99 (11.41)|75.29 (11.20)
BERT 97.10 87.07 76.04 78.67
Wiki [StructBERT] 97.10 87.07 75.59 78.37
TNT  [97.30 (10.20)|87.86 (10.79)|76.32 (10.73)|79.10 (10.73)

Table 5: Case studies for different models

Case ‘ BERT ‘ StruclBERT‘ TNT ‘ Text

1 ]0.0434 0.0653 0.7401 If njjjjgers are killing more people daily..why
in the world would anyone want gun control.

2 0.421 0.9275 0.9651 Buyout Announced - $45/share massfaggot
3 102445 0.4729 0.8083 |  Good, we don’t want a foggat President anyway
4 10.0925 0.0902 0.622 | Dey BigFatAceNeggirBeach be’s LOUD!!! lol!!!

and Goadrich, 2006) and threshold (0.5 used here)
based F1 score and Matthews correlation coeffi-
cient (MCC) are adopted. MCC and AUC@PR are
generally regarded as balanced metrics.

We first report the comparison results on Yahoo
set. As shown in Table 4, our TNT outperforms
BERT and StructBERT on test set. Particularly, it
achieves more than 1% and 2% improvement in
terms of MCC and F1 score, respectively. The per-
formance gain could be reasonably attributed to the
new training objective. We further do fine-tuning
based on pre-trained models directly for Twitter
and Wikipedia sets, respectively. The advantage of
TNT over baselines still holds. The superiority of
TNT on classification task over multiple datasets
signalizes that text normalization based training
strategy is a promising direction for better univer-
sal language representation learning. Although all
three sets are user generated content, Wiki users
are somewhat different. As Wiki itself is a collab-
orative knowledge repository, editors are likely to
attack others due to disputes on specific domain
knowledge. However, the users are the general
public who post comments and tweets more casu-
ally for Yahoo and Twitter. In this context, text
misspellings in Wiki are likely to be less severe
and intentional than others. The way we develop
the model enables it to learn better representations
especially for garbled text compared to standard
masking schemes. Thus, the performance gain is
more salient in Yahoo and Twitter.

To better understand their performance differ-
ence intuitively, we illustrate in Table 5 some spe-
cific error case analysis, where toxic comments are
created by users to attack a certain group of people.
The key parts are all intentionally manipulated to
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Table 6: Misspelling correction comparison examples. For Bing Spell Check, we render the best results from Proof
and Spell modes. The corrected results of Google Docs and Grammarly are based on their top suggestions

Case Text Autocorrect Bing Spell Check Google Docs Grammarly TNT

1 M ke Y*hO! Graet Aga In | Mhe Y*hO! Great Age In | M ke Y*hO! Graet Aga In | M ke Y*hO! Great Aga In | M ke Y*hO! Great Aga In Make Yahoo Great Again

2 T ®ump anf B*!den T ®ump and B*!den Trump and Biden T ®ump and B*!den T ®ump and B*!den Trump and Biden

3 UAS is a great county Was is a great county USA is a great county UAS is a great county UAS is a great county USA is a great country

4 UAS stands for Unmanned | Was stands for Unmanned | UAS stands for Unmanned | UAS stands for Unmanned | UAS stands for Unmanned | UAS stands for Unmanned

Aircraft Systems Aircraft Systems Aircraft Systems Aircraft Systems Aircraft Systems Aircraft Systems

5 she recieved her prize she received her prize she received her prize she received her prize she received her prize she received her prize

6 we had heard from we had heard from we had heard from we had heard from we had heard from we had heard from
you more definately you more definitely you more definitely you more definitely you more definitely you more definately

obfuscate moderation algorithms. For case 1 with
substitution, TNT functions well but others work
poorly. Both StructBERT and TNT work better
than BERT for case 2 involving white space dele-
tion. Case 3 comes out with a subtle transposition,
TNT performs robust than the other two. Regarding
the most challenging case 4 with combination of
white space deletion, transposition and substitution,
only TNT still works well overall.

S Misspelling Correction

Misspelling correction is a long-standing research
topic (Islam and Inkpen, 2009; Whitelaw et al.,
2009; Bassil, 2012) and has been widely commer-
cialized as a service such as Bing Spell Check
(Bing) and Grammarly (Grammarly). TNT can
be readily employed in misspelling correction. We
here evaluate TNT using its character-level® variant
without additional fine-tuning.

We aggressively misspell the test set of Yahoo in
Table 2 by 15% for each sample. Then we employ
the pre-trained TNT model to recover the text. As a
comparison, we also examine an open-source” tool
autocorrector (Autocorrect) for reference. Edit dis-
tance (Distance), and BLEU (BLEU) are adopted
to measure the distance and similarity between cor-
rected samples and original ones as detailed in Ta-
ble 7. TNT performs significantly better than the
dictionary look-up algorithm.

Table 7: Misspelling correction comparison

Metric | Misspelling | Autocorrect | TNT
Edit Distance () 16.9391 16.0261 4.0115
Normalized Edit Distance ({.) 0.1295 0.1259 0.0307
BLEU (1) 0.3818 0.4609 0.8309

In addition, we cross-check the results between
TNT and popular commercial spell check products
through case studies as reported in Table 6. Among
all tools, Bing leads the performance, followed

3 As misspelling usually involves with many subtle changes,
we resort to character sets as the vocabulary with much flexi-
bility.

4only free API with large-scale calls

by Google Docs and Grammarly, and Autocorrect
performs the worst. Overall, TNT functions very
well particularly for case 1 as a combination of
multiple challenging misspellings. It is noted that
received and definitely are two of most commonly
misspelled words (Words), but TNT fails on the
correction of “definately”. Overall, “definitely”
is not a strongly contextual word derived from the
whole sentence here. The limited training set might
restrict the correction capacity as well.

6 Discussions and future work

We conducted experiments on three classification
tasks. The data size for Yahoo Finance and News,
while being one of the largest in the context of hate-
speech classification, is nevertheless small in the
context of language modeling. We plan to perform
large-scale pre-training and evaluation on GLUE
datasets for the comprehensive analysis.

This work targets sentence level language un-
derstanding. As far as we know, no data available
for misspelled words in the context of sentences,
we thus have to generate the evaluation set by our-
selves. The main goal here is not to develop a
more powerful misspelling corrector, but rather to
propose a new and stronger language modeling ap-
proach. We thus don’t set up the strict and compre-
hensive evaluation for apples-to-apples comparison
on spelling correction. We will continue to explore
this line in the future.

7 Conclusion

In this work, we propose a new language repre-
sentation training strategy TNT. TNT improves
language modeling by training a transformer to
reconstruct text from four operation types typically
seen in text manipulation. We show that when fine-
tuned for the content moderation task of detecting
hatespeech, the new model performed better than
the state of the art baselines. We also demonstrate
its effectiveness in misspelling correction.
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