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Abstract
Language drift has been one of the major ob-
stacles to train language models through in-
teraction. When word-based conversational
agents are trained towards completing a task,
they tend to invent their language rather than
leveraging natural language. In recent liter-
ature, two general methods partially counter
this phenomenon: Supervised Selfplay (S2P)
and Seeded Iterated Learning (SIL). While
S2P jointly trains interactive and supervised
losses to counter the drift, SIL changes the
training dynamics to prevent language drift
from occurring. In this paper, we first high-
light their respective weaknesses, i.e., late-
stage training collapses and higher negative
likelihood when evaluated on human corpus.
Given these observations, we introduce Super-
vised Seeded Iterated Learning (SSIL) to com-
bine both methods to minimize their respective
weaknesses. We then show the effectiveness of
SSIL in the language-drift translation game.

1 Introduction

Since the early days of NLP (Winograd, 1971),
conversational agents have been designed to in-
teract with humans through language to solve di-
verse tasks, e.g., remote instructions (Thomason
et al., 2015) or booking assistants (Bordes et al.,
2017; El Asri et al., 2017). In this goal-oriented
dialogue setting, the conversational agents are of-
ten designed to compose with predefined language
utterances (Lemon and Pietquin, 2007; Williams
et al., 2014; Young et al., 2013). Even if such
approaches are efficient, they also tend to narrow
down the agent’s language diversity. To remove
this restriction, recent work has been exploring in-
teractive word-based training. In this setting, the
agents are generally trained through a two-stage
process (Wei et al., 2018; De Vries et al., 2017;
Shah et al., 2018; Li et al., 2016a; Das et al., 2017):
Firstly, the agent is pretrained on a human-labeled

corpus through supervised learning to generate
grammatically reasonable sentences. Secondly, the
agent is finetuned to maximize the task-completion
score by interacting with a user. Due to sample-
complexity and reproducibility issues, the user is
generally replaced by a game simulator that may
evolve with the conversational agent. Unfortu-
nately, this pairing may lead to the language drift
phenomenon, where the conversational agents grad-
ually co-adapt, and drift away from the pretrained
natural language. The model thus becomes unfit to
interact with humans (Chattopadhyay et al., 2017;
Zhu et al., 2017; Lazaridou et al., 2020).

While domain-specific methods exist to counter
language drift (Lee et al., 2019; Li et al., 2016b), a
simple task-agnostic method consists of combining
interactive and supervised training losses on a pre-
training corpus (Wei et al., 2018; Lazaridou et al.,
2016), which was later formalized as Supervised
SelfPlay (S2P) (Lowe et al., 2020).

Inspired by language evolution and cultural trans-
mission (Kirby, 2001; Kirby et al., 2014), recent
work proposes Seeded Iterated Learning (SIL) (Lu
et al., 2020) as another task-agnostic method to
counter language drift. SIL modifies the training
dynamics by iteratively refining a pretrained stu-
dent agent by imitating interactive agents, as il-
lustrated in Figure 1. At each iteration, a teacher
agent is created by duplicating the student agent,
which is then finetuned towards task completion.
A new dataset is then generated by greedily sam-
pling the teacher, and those samples are used to
refine the student through supervised learning. The
authors empirically show that this iterated learn-
ing procedure induces an inductive learning bias
that successfully maintains the language grounding
while improving task-completion.

As a first contribution, we further examine the
performance of these two methods in the setting of
a translation game (Lee et al., 2019). We show that
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Figure 1: SIL (Lu et al., 2020). A student agent is iteratively refined using newly generated data from a teacher
agent. At each iteration, a teacher agent is created on top of the student before being finetuned by interaction, e.g.
maximizing a task completion-score. Teacher generates a dataset with greedy sampling and students imitate those
samples. The interaction step involves interaction with another language agent.

S2P is unable to maintain a high grounding score
and experiences a late-stage collapse, while SIL has
a higher negative likelihood when evaluated on hu-
man corpus. We propose to combine SIL with S2P
by applying an S2P loss in the interactive stage of
SIL. We show that the resulting Supervised Seeded
Iterated Learning (SSIL) algorithm manages to get
the best of both algorithms in the translation game.
Finally, we observe that the late-stage collapse of
S2P is correlated with conflicting gradients before
showing that SSIL empirically reduces this gradi-
ent discrepancy.

2 Preventing Language Drift

We describe here our interactive training setup be-
fore introducing different approaches to prevent
language drift. In this setting, we have a set of
collaborative agents that interact through language
to solve a task. To begin, we train the agents to
generate natural language in a word-by-word fash-
ion. Then we finetune the agents to optimize a task
completion score through interaction, i.e., learning
to perform the task better. Our goal is to prevent
the language drift in this second stage.

2.1 Initializing the Conversational Agents
For a language agent f parameterized by θ, and
a sequence of generated words w1:i = [wj ]

i
j=1

and an arbitrary context c, the probability of the
next word wi is p(wi+1|w1:i, c) = fθ(w1:i, c)
We pretrain the language model to generate mean-
ingful sentences by minimizing the cross-entropy
loss LCE

pretrain where the word sequences are sam-
pled from a language corpus Dpretrain. Note that
this language corpus may either be task-related or
generic. Its role is to get our conversational agents
a reasonable initialization.

2.2 Supervised Selfplay (S2P)
A common way to finetune the language agents
while preventing language drift is to replay the

pretraining data during the interaction stage. In
S2P the training loss encourages both maximizing
task-completion while remaining close to the initial
language distribution. Formally,

LS2P = LINT + αLCE
pretrain (1)

where LINT is a differentiable interactive loss max-
imizing task completion, e.g. reinforcement learn-
ing with policy gradients (Sutton et al., 2000), Gum-
bel Straight-through Estimator (STE) (Jang et al.,
2017) etc., LCE

pretrain is a cross-entropy loss over the
pretraining samples. α is a positive scalar which
balances the two losses.

2.3 Seeded Iterated Learning (SIL)
Seeded Iterated Learning (SIL) iteratively refines
a pretrained student model by using data gener-
ated from newly trained teacher agents (Lu et al.,
2020). As illustrated in Figure 1, the student agent
is initialized with the pretrained model. At each
iteration, a new teacher agent is generated by du-
plicating the student parameters. It is tuned to
maximize the task-completion score by optimiz-
ing the interactive loss LTEACHER = LINT In a
second step, we sample from the teacher to gen-
erate new training data Dteacher, and we refine
the student by minimizing the cross-entropy loss
LSTUDENT = LCE

teacher where sequence of words
are sampled from Dteacher. This imitation learn-
ing stage can induce an information bottleneck,
encouraging the student to learn a well-formatted
language rather than drifted components.

2.4 SSIL: Combining SIL and S2P
S2P and SIL have two core differences: first, SIL
never re-uses human pretraining data. As observed
in Section 4.1, this design choice reduces the lan-
guage modeling ability of SIL-trained agents, with
a higher negative likelihood when evaluated on
human corpus. Second, S2P agents merge inter-
active and supervised losses, whereas SIL’s stu-
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Finetuning Methods Training Losses

Gumbel LINT

S2P LINT + αLCE
pretrain

SIL (teacher) LINT

SIL (student) LCE
teacher

SSIL (teacher) LINT + αLCE
pretrain

SSIL (student) LCE
teacher

Table 1: Finetuning with respective training objective.

dent never experiences an interactive loss. As
analyzed in Section 4.3, the S2P multi-task loss
induces conflicting gradients, which may trigger
language drift. In this paper, we propose to com-
bine these two approaches and demonstrate that
the combination effectively minimizes their respec-
tive weaknesses. To be specific, we apply the
S2P loss over the SIL teacher agent, which entails
LTEACHER = LINT+αLCE

pretrain. We call the result-
ing algorithm, Supervised Seeded Iterated Learn-
ing (SSIL). In SSIL, teachers can generate data
that is close to the human distribution due to the
S2P loss, while students are updated with a consis-
tent supervised loss to avoid the potential weakness
of multi-task optimization. In addition, SSIL still
maintains the inductive learning bias of SIL. We list
all these methods in Table 1 for easy comparison.
We also experiment with other ways of combining
SIL and S2P by mixing the pretraining data with
teacher data during the imitation learning stage. We
call this method MixData. We show the results of
this approach in Appendix 4.2. We find that this
approach is very sensitive to the mixing ratio of
these two kinds of data, and the best configuration
is still not as good as SSIL.

3 Experimental Setting

3.1 Translation Game

We replicate the translation game setting from (Lee
et al., 2019) as it was designed to study language
drift. First, a sender agent translates French to
English (Fr-En), while a receiver agent translates
English to German (En-De). The sender and re-
ceiver are then trained together to translate French
to German with English as a pivot language. For
each French sentence, we sample English from the
sender, send it to the receiver, and sample German
from the receiver. The task score is defined as the
BLEU score between generated German transla-
tion and the ground truth (BLEU De) (Papineni
et al., 2002). The goal is to improve the task score

without losing the language structure of the inter-
mediate English language.

3.2 Training Details

The sender and the receiver are pretrained on the
IWSLT dataset (Cettolo et al., 2012) which con-
tains (Fr,En) and (En,De) translation pairs. We
then use the Multi30k dataset (Elliott et al., 2016)
to build the finetuning dataset with (Fr,De) pairs.
As IWSLT is a generic translation dataset and
Multi30k only contains visually grounded trans-
lated captions, we also call IWSLT task-agnostic
while Multi30K task-related. We use the cross-
entropy loss of German as the interactive training
objective, which is differentiable w.r.t. the receiver.
For the sender, we use Gumbel Softmax straight-
through estimator to make the training objective
also differentiable w.r.t. the sender, as in Lu et al.
(2020). Implementation details are in Appendix B

3.3 Metrics for Grounding Scores

In practice, there are different kinds of language
drift (Lazaridou et al., 2020) (e.g. syntactic drift
and semantic drift). We thus have multiple met-
rics to consider when evaluating language drift.
We first compute English BLEU score (BLEU En)
comparing the generated English translation with
the ground truth human translation. We include
the negative log-likelihood (NLL) of the generated
En translation under a pretrained language model
as a measure of syntactic correctness. In line with
(Lu et al., 2020) , we also report results using an-
other language metric: the negative log-likelihood
of human translations (RealNLL) given a finetuned
Fr-En model. We feed the finetuned sender with
human task-data to estimate the model’s log likeli-
hood. The lower is this score, the more likely the
model would generate such human-like language.

4 Experiments

4.1 S2P and SIL Weaknesses

We report the task and grounding scores of vanilla
Gumbel, S2P, SIL, and SSIL in Figure 2. The re-
spective best hyper-parameters can be found in the
appendix. As reported by Lu et al. (2020), vanilla
Gumbel successfully improves the task score BLEU
De, but the BLEU En score as well as other ground-
ing metric collapses, indicating a language drift
during the training. Both S2P and SIL manage
to increase BLEU De while maintaining a higher
BLEU En score, countering language drift. How-
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(a) BLEU De (Task Score) (b) BLEU En (c) NLL (d) RealNLL

Figure 2: Task and language metrics for Vanilla Gumbel, SIL, S2P, and SSIL in the translation game average over
5 seeds. We also show the results of mixing pretraining data in the teacher dataset (Section 4.2). The plots are
averaged over 5 seeds with shaded area as standard deviation. Although SIL and S2P both counter language drift,
S2P suffers from late collapse, and SIL has a high RealNLL, suggesting that its output may not correlate well with
human sentences.

(a) Bleu En (b) Cosine Similarity

Figure 3: Cosine similarity between the gradients is-
sued from LINT and LCE

pretrain. The collapse of the
BLEU En matches the negative cosine similarity.

ever, S2P has a sudden (and reproducible) late-
stage collapse, unable to maintain the grounding
score beyond 150k steps. On the other hand, SIL
has a much higher RealNLL than S2P, suggesting
that SIL has a worse ability to model human data.
SSIL seems to get the best of the two worlds. It
has a similar task score BLEU De as S2P and SIL,
while it avoids the late-stage collapse. It ends up
with the highest BLEU En, and it improves the Re-
alNLL over SIL, though still not as good as S2P.
Also, it achieves even better NLL, suggesting that
its outputs are favoured by the pretrained language
model.

4.2 Mixing Teacher and Human Data
We also explore whether injecting pretraining data
into the teacher dataset may be a valid substitute
for the S2P loss. We add a subset of the pretrain-
ing data in the teacher dataset before refining the
student, and we report the results in Figure 2 and 6.
Unfortunately, such an approach was quite unsta-
ble, and it requires heavy hyper-parameters tuning
to match SSIL scores. As explained in (Kirby,
2001), iterated learning rely on inductive learning

to remove language irregularities during the imita-
tion step. Thus, mixing two language distributions
may disrupt this imitation stage.

4.3 Why S2P collapses?

We investigate the potential cause of S2P late-stage
collapse and how SSIL may resolve it. We firstly
hope to solve this by increasing the supervised loss
weight α. However, we find that a larger α only
delays the eventual collapse as well as decreases
the task score, as shown in Figure 5 in Appendix D.

We further hypothesize that this late-stage col-
lapse can be caused by the distribution mismatch
between the pretraining data (IWSLT) and the
task-related data (Multi30K), exemplified by their
word frequencies difference. A mismatch between
the two losses could lead to conflicting gradients,
which could, in turn, make training unstable. In
Figure 3, we display the cosine similarity of the
sender gradients issued by the interactive and super-
vised losses cos(∇senderLINT, ∇senderLCE

pretrain)
for both S2P and SSIL for α = 0.5 during train-
ing. Early in S2P training, we observe that the two
gradients remain orthogonal on average, with the
cosine oscillating around zero. Then, at the same
point where the S2P Bleu En collapses, the cosine
of the gradients starts trending negative, indicating
that the gradients are pointing in opposite direc-
tions. However, SSIL does not have this trend, and
the BLEU En does not collapse. Although the exact
mechanism of how conflicting gradients trigger the
language drift is unclear, current results favor our
hypothesis and suggest that language drift could
result from standard multi-task optimization issues
(Yu et al., 2020; Parisotto et al., 2016; Sener and
Koltun, 2018) for S2P-like methods.
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Conclusion We investigate two general methods
to counter language drift: S2P and SIL. S2P experi-
ences a late-stage collapse on the grounding score,
whereas SIL has a higher negative likelihood on
human corpus. We introduce SSIL to combine
these two methods effectively. We further show
the correlation between S2P late-stage collapse and
conflicting gradients.
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A Explicit losses in the Translation Game

S2P Let LGSTE(Fr,De) be the loss of Gumbel STE, when two agents is fed with Fr and the ground
truth German translation De. Let LCE(X,Y ) to be the supervised training loss with source X and target
Y . Then for each interactive training step, we have for both agents

LS2P
sender = LGSTE(Frft,Deft) + αLCE(Frpre,Enpre) (2)

LS2P
receiver = LGSTE(Frft,Deft) + αLCE(Enpre,Depre) (3)

(a) Bleu En (b) Cosine Similarity

Figure 4: Cosine similarity bewteen LCE
pretrain and LINT when α = 0.7

B Translation Game Implementation Details

We here report the experimenatl protocol from We use the Moses tokenizer (Koehn et al., 2007) and
we learn a byte-pair-encoding (Sennrich et al., 2016) from Multi30K with all language. Then the same
BPE is applied to different dataset. Our vocab size for En, Fr, De is 11552, 13331, and 12124. Our
pretraining datasets are IWSLT while the finetuning datasets are Multi30K. Our language model is trained
with captions data from MSCOCO (Lin et al., 2014). For image ranker, we use the captions in Multi30K
as well as the original Flickr30K images. We use a ResNet152 with pretrained ImageNet weights to
extract the image features. We also normalize the image features. We follow the pretraining and model
architecture from work (Lu et al., 2020).

C Hyper-parameters

During finetuning, we set Gumbel temperature to be 0.5 and follow the previous work (Lu et al., 2020) for
other hyperparameters, e.g. learning rate, batch size, etc. We list our hyper-parameters and our sweep:
We mainly use P100 GPU for our experiments. For training 200k steps, Gumbel takes 17 hours, S2P

Name Sweep

k1 3000, 4000
k2 200, 300, 400
k′2 200, 300, 400
α 0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7

takes 24 hours, SIL takes 18 hours and SSIL takes 24 hours. The best hyperparameters for SIL are
k1 = 3000, k2 = 200, k′2 = 300. The best alpha for S2P is 1, while for SSIL we choose α = 0.5.
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D S2P Details

We show the results of S2P with varying α in Figure 5. In general, one can find that for S2P there is a
trade-off between grounding score and task score controlled by α. A larger α might delay the eventual
collapse. However, if the α is too large, the task score will decrease significantly. As a result, even though
increasing α seems to fit the intuition, it cannot fix the problem.

(a) BLEU De (Task Score) (b) BLEU En

Figure 5: S2P with different α. Increased α might delay or remove the late-stage collapse, but it might be at the
cost of task score.

(a) BLEU De (Task Score) (b) BLEU En (c) NLL (d) RealNLL

Figure 6: Mix with Pretraining data in SIL.

(a) BLEU De (Task Score) (b) BLEU En (c) NLL (d) RealNLL

Figure 7: SSIL with different α
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(a) BLEU De (Task Score) (b) BLEU En

Figure 8: Effect of k2 for MixData.α = 0.2

(a) BLEU De (Task Score) (b) BLEU En

Figure 9: Effect of α for MixData. k2 = 100


