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Abstract

Argumentation accommodates various rhetori-
cal devices, such as questions, reported speech,
and imperatives. These rhetorical tools usu-
ally assert argumentatively relevant proposi-
tions rather implicitly, so understanding their
true meaning is key to understanding certain
arguments properly. However, most argument
mining systems and computational linguistics
research have paid little attention to implicitly
asserted propositions in argumentation. In this
paper, we examine a wide range of computa-
tional methods for extracting propositions that
are implicitly asserted in questions, reported
speech, and imperatives in argumentation. By
evaluating the models on a corpus of 2016 U.S.
presidential debates and online commentary,
we demonstrate the effectiveness and limita-
tions of the computational models. Our study
may inform future research on argument min-
ing and the semantics of these rhetorical de-
vices in argumentation. '

1 Introduction

Argument mining is a growing research field
in computational linguistics. One of its main
goals is to automatically identify pro- and counter-
arguments underlying argumentative discourse.
The foundational step for argument mining is to
extract the elementary units of arguments in the
discourse, after which the support or attack rela-
tions between these units are identified. According
to argumentation theory, the elementary units in
argumentation are asserted propositions (Eemeren
and Grootendorst, 1984). However, the dominant
approach to extracting elementary units from text—
often called argumentative discourse unit segmen-
tation (Ajjour et al., 2017; Persing and Ng, 2016;
Jo et al., 2019)—is rather simplistic and may even

'Our data and source code are available at github.com/

yohanjo/emnlp20_prop_extr. All details for repro-
ducibility are in Appendix A.
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seem inconsistent with the theory. This approach
segments text into smaller pieces (e.g., clauses)
and treats each segment as an elementary unit of
arguments. But these segments include locutions
that are seemingly not assertives, such as questions
and imperatives used as rhetorical devices. In fact,
questions, imperatives, and reported speech in ar-
gumentation often assert propositions implicitly.
Therefore, in order to understand certain argumen-
tation and identify pro-/counter-arguments prop-
erly, locutions in argumentation should not be taken
literally in their surface forms; instead, we need
to go further and understand what propositions are
implicitly asserted and argumentatively relevant in
those locutions. Our work provides some computa-
tional solutions to this problem, namely, extracting
implicitly asserted propositions in argumentation.
The following example dialogue illustrates how
questions, reported speech, and imperatives assert
propositions implicitly in argumentation.

A : All human should be vegan. (D
Look at how unethical the meat )
production industry is.

Environmental scientists proved that 3)
vegan diets reduce meat production by 73%.
B : Well, don’t vegan diets lack essential 4)

nutrients, though?

In this dialogue, speaker A is supporting conclu-
sion 1 using sentences 2 and 3, whereas speaker B
is attacking the conclusion using sentence 4. Sen-
tence 2 is an imperative, but in this argumentation,
it is asserting that the meat production industry is
unethical. In sentence 3, the primary proposition
asserted in support of the conclusion is the con-
tent of this reported speech—*“vegan diets reduce
meat production by 73%”’; the “environmental sci-
entists” is presented as the source of this content
in order to strengthen the main proposition in this

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 24-38,
November 16-20, 2020. (©)2020 Association for Computational Linguistics


github.com/yohanjo/emnlp20_prop_extr
github.com/yohanjo/emnlp20_prop_extr

sentence. Lastly, sentence 4 is in question form, but
it is in fact asserting that vegan diets /lack essential
nutrients. These examples suggest that properly
understanding arguments requires comprehension
of what is meant by questions, reported speech, and
imperatives, that is, what they assert implicitly.

In this paper, we test various computational
methods to extract propositions that are implic-
itly asserted in questions, reported speech, and
imperatives. Across the tasks, we explore a wide
range of computational methods. For questions, we
develop neural and rule-based methods for trans-
forming questions into asserted propositions. For
reported speech, we present feature-based and neu-
ral models to identify speech content (the primary
proposition asserted) and speech source. Lastly,
for imperatives, we test a simple transformation
rule manually and analyze the patterns of how they
assert propositions. By evaluating our models on
a corpus of the 2016 U.S. presidential debates and
online commentary, we demonstrate their effective-
ness and limitations.

Our contributions are as follows:

e Our work is a first computational study of
extracting propositions asserted in questions,
reported speech, and imperatives in argumen-
tation. We demonstrate the effectiveness and
limitations of various computational models.
This problem is fundamental in argument min-
ing, albeit understudied.

We find the evidence of strong syntactic reg-
ularities in how propositions are asserted in
question form.

We show the robust performance of a state-of-
the-art language model for identifying speech
content and source in reported speech.

Our case study of how imperatives implicitly
assert propositions is novel in computational
linguistics and argumentation theory. This
study may inform future research on the se-
mantics of imperatives in argumentation.

2 Background

Argumentation is an illocutionary act of sup-
porting or attacking an expressed opinion by
asserting propositions, according to Pragma-
Dialectics (Eemeren and Grootendorst, 1984). This
definition might seem counterintuitive, as argumen-
tation often accommodates locutions that are not
assertives, such as questions and imperatives. We
will draw upon theory and discuss how proposi-
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tions are asserted implicitly in questions, reported
speech, and imperatives in argumentation. But for
the sake of the readability of the paper, we will
defer this discussion to the respective sections of
questions (§4), reported speech (§5), and impera-
tives (§6).

On the other hand, one of the main goals of
argument mining is to identify pro- and counter-
relations between asserted propositions. In most
argument mining systems, asserted propositions
are approximated and substituted by argumenta-
tive discourse units (ADUs). An ADU is the mini-
mal locution that performs an argumentative func-
tion. Given an utterance, ADUs may be identified
based on syntactic rules, such as phrases (Stede
et al., 2016), clauses (Peldszus and Stede, 2015),
or a series of clauses (Al Khatib et al., 2016), or
by machine learning models, such as neural net-
works (Ajjour et al., 2017) or retrieval (Persing and
Ng, 2016). None of these methods go further to
understand what propositions are asserted in each
ADU.

More recently, a computational framework has
been proposed to extract asserted propositions from
ADUs (Jo et al., 2019). This cascade model pro-
poses how to detect reported speech, questions,
and imperatives, reconstruct any missing subjects,
and make final revisions for grammar correction.
While this model was built upon the same goal of
extracting asserted propositions from locutions, it
does not present computational models to extract
implicit propositions in questions, reported speech,
and imperatives. Hence, our work fills this gap in
the cascade model.

3 Domain

The domain we focus on is 2016 U.S. presidential
debates and online commentary on Reddit (Visser
et al., 2019). This corpus includes the first Repub-
lican candidates debate for the primaries, the first
Democratic candidates debate for the primaries,
and the first general election debate. The corpus
also includes Reddit discussions on these debates.

Each utterance has been segmented into ADUs,
and each ADU has been further annotated with
an asserted proposition. The inter-annotator agree-
ment is Cohen’s k of 0.61 (substantial agreement).
These debates are ideal for our analysis, since they
accommodate questions, reported speech, and im-
peratives from various speakers and in both formal
and informal debate settings.



Our work uses the data pre-processed by Jo
et al. (2019). This dataset has resolved anaphors in
ADUs and paired ADUs with asserted propositions
in a readily-available format®. While most of our
work is based on this dataset, individual tasks need
additional processing or additional data. They will
be described in the respective section.

4 Questions

In this section, we extract implicit propositions
from questions in argumentation. The task is for-
mulated as transforming a question into its asserted
proposition.

4.1 Theoretical Background

Questions in argumentation may be categorized
into rhetorical questions and pure questions.
Rhetorical questions are not intended to require
an answer; instead, they often make an implicit as-
sertive (as in sentence 4). Zhang et al. (2017) iden-
tified finer-grained types of rhetorical questions,
such as sharing concerns, agreeing, and conceding.
Our work is not aiming to classify these types, but
instead focuses on extracting implicit assertives in
rhetorical questions.

Pure questions, on the other hand, are intended to
seek information. According to the speech act the-
ory, non-binary questions have incomplete propo-
sitions (Searle, 1969). For instance, the question
“How many people were arrested?” has the proposi-
tion “X people were arrested”’, with the questioned
part underspecified and denoted by X. Although
the proposition is semantically underspecified, sub-
sequent arguments may build on this, making this
proposition an important argumentative component.
Hence, our work covers extracting semantically un-
derspecified propositions from pure questions as
well. (See Bhattasali et al. (2015) for computa-
tional methods to distinguish between rhetorical
questions and pure questions.)

4.2 Models

We explore two neural seq2seq models and one
rule-based model. For all these models, both input
and output are a sequence of words.

4.2.1 Neural Models

We test two RNN-based seq2seq models. First, the
basic model encodes a question using BiLSTM
and decodes a proposition using LSTM and the

https://github.com/yohanjo/amwl9
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standard attention mechanism (Luong et al., 2015).
Figure 1 illustrates the snapshot of the model for
the jth output word.

Formally, the input is a sequence of words
w, - wk, and the embedding of w? is denoted
by w¥. BiLSTM encodes each word w¥ and out-

%
puts forward/backward hidden states h f and %F :

- —
RE nE = BiLSTM(w?, KE |, hE ),
7E E
hy = hyy =0

For the jth word to be generated, an LSTM de-
coder encodes the concatenation of the previously
generated word wﬁl and context vector Ef_l (ex-
plained below), and the previous hidden state:
D D .3 E D
hj = LSTM([wj—l;hj—l]vhj—l)a

%
hi =[h{; hy].

Next, the decoder attends to the encoder’s hidden
states using an attention mechanism. The attention
weight of the ¢th hidden state is the dot product of
the hidden states from the encoder and the dejcoder:
D E. J7E] exp(aj;
aji=hP [RERE), ay = ot
> exp(agir)
s E -~ TE.SE
i

The probability of the vth word in the vocabulary
being generated is calculated as in the standard
attention decoder mechanism:

Pg(w,) = softmax(We [hP; hY] + bg).,
where W and b are trainable weight matrix and
bias vector.

The basic seq2seq model requires a lot of train-
ing data, whereas according to our observation,
question transformation is often formulaic, consist-
ing largely of word reordering. Hence, our copy
model uses a copying mechanism to learn to re-use
input words. A prior model (Gu et al., 2016) does
not perform well in our task, so we modified it as
follows (Figure 1).

Our copy model is based on the basic model
and has the same process for the generating part.
When an output word is copied from the input text,
instead of being generated, the probability of the
tth input word being copied is proportional to the
attention weight of the ¢th hidden state. That is, the
probability of the vth word in the vocabulary being
copied is:

N
Po(wy) = Z ajil(wf = wy).
i=1

The final probability of w, being output is a
weighted sum of Pr(w,) and Pg(w,), where the


https://github.com/yohanjo/amw19

Decoder

Encoder

Basic Model

Encoder Decoder

Copy Model

Figure 1: Basic model and copy model for question transformation. The snapshots for the jth output word.

weight J is calculated as
5; = o(Wsh% + bs),

P(wy) = 0Pc(wy) + (1 — 0)Pg(wy),
where Wy and bs are trainable weight matrix and
bias vector. The main difference of our model from
existing ones is that we compute the mixture weight
d; for Pc and Pg using a separate neural network.
In contrast, existing models do not explicitly com-
pute this weight (Gu et al., 2016) or do not use
attentional hidden states (Allamanis et al., 2016).

We try the following hyperparameter values:

e Encoder/decoder hidden dim: 96, 128, 160,
192 (basic model) / 128, 192 (copy model)
Beam size: 4

Optimizer: Adam

Learning rate: 0.001

Gradient clipping: 1

Word embedding: GloVe 840B

4.2.2 Rule-Based Model

As question transformation is often formulaic, a
rule-based method may be effective for small data.
For each question, the most relevant parts for trans-
formation are the first word (wh-adverb or auxiliary
verb), subject, auxiliary verb, negation, and main
verb (i.e., be+adjective, be+gerund, or else). For
instance, the question “Why would you not pay the
tax?” might be rearranged to “@M @ the
tax”, where why and not are removed. We com-
pile rules that match combinations of these com-
ponents, starting with a rule that has a high cover-
age and breaking it down to more specific ones if
the rule makes many errors. An example rule is
“Why [MODAL] [SUBJECT] not” — “[SUBJECT]

27

[MODALY]”, which applies to the above example.
As aresult, we compiled total 94 rules for 21 first
words (4.5 rules per first word on average) based
on the US2016 dataset (see Table 7 in Appendix B
for a summary of these rules).

4.3 Data

US2016: Our main data is Jo et al. (2019)’s
dataset of the 2016 U.S. presidential debates and
commentary. We filtered 565 pairs of an ADU and
its asserted proposition that are annotated with the
following question types:

e Pure: e.g., “Who is Chafee?” — “Chafee
is xxx”; “Do lives matter?” — “Lives do /
do not matter” (Semantically underspecified
parts are denoted by xxx and the slash /.)

o Assertive: e.g., “What does that say about
your ability to handle challenging crises as
president?” — “Clinton does not have the
ability to handle challenging crises as presi-
dent”

e Challenge: c.g., “What has he not answered?”
— “He has answered questions”

e Directive: e.g., “Any specific examples?” —
“Provide any specific examples”

Note that only pure questions are semantically un-
derspecified (indicated by xxx and /); the other
types contain concrete propositions to be asserted.
Our models are trained on all question types.

MoralMaze: This dataset consists of 8 episodes
of the BBC Moral Maze Radio 4 program from the
2012 summer season’ (Lawrence et al., 2015). The

*http://corpora.aifdb.org/mm2012
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US2016 MoralMaze
BLEU %M BLEU %M
Original Questions 47.5 - 50.7 -
Basic Model 5.3 - 6.5 -
Copy Model 41.5 - 44.1 -
Rules 54.5  64% 51.9 48%
Rules (well-formed) 56.7 85% 54.5  69%

Table 1: Accuracy of extracting implicitly asserted
propositions from questions. “%M?” is the percentage
of questions matched with any hand-crafted rules.

episodes deal with various issues, such as the bank-
ing system, welfare state, and British empire. In
each episode, the BBC Radio presenter moderates
argumentation among four regular panelists and
three guest participants. This dataset has been an-
notated in the same way as US2016, and we filtered
314 pairs of a question and its asserted proposition.
This dataset is not used for training or compiling
rules; instead, it is only used as a test set to examine
the domain-generality of the models.

4.4 Experiment Settings

For the neural models, we conduct two sets of ex-
periments. First, we train and test the models on
US2016 using 5-fold cross validation. Second, to
examine domain generality, we train the models on
the entire US2016 dataset and test on MoralMaze.

For the rule-based model, we compile the rules
based on US2016 and test them on US2016 (previ-
ously seen) and MoralMaze (unseen).

The accuracy of the models is measured in terms
of the BLEU score, where the references are as-
serted propositions annotated in the dataset.

4.5 Result

As shown in Table 1, the basic seq2seq model (row
2) performs poorly, because of the small size of the
training data. On the other hand, the copy model
(row 3) significantly improves the BLEU scores
by 36.2-37.6 points, by learning to re-use words
in input texts*. However, it still suffers the small
data size, and its outputs are worse than the original
questions without any transformation (row 1).

In contrast, the hand-crafted rules (rows 4-5)
significantly improve performance and outperform
the original questions. The effectiveness of the rule-
based method on MoralMaze, which was not used
for compiling the rules, indicates that these rules

*Our model also outperforms a prior copy model (Gu et al.,
2016) by more than 20 BLEU scores.
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generalize across argumentative dialogue®. The ef-
fectiveness of the rule-based method also suggests
that there exist a high degree of syntactic regulari-
ties in how propositions are asserted implicitly in
question form, and the hand-crafted rules provide
interpretable insights into these regularities (see
Table 7 in Appendix B for the rules).

Taking a closer look at the rule-based method,
we find that many questions are subordinated or
ill-formed, and thus the rules match only 64% of
questions for US2016 and 48% of questions for
MoralMaze. When we focus only on well-formed
questions (that begin with a wh-adverb or auxiliary
verb), the rules match 85% and 69% of questions
for the respective dataset, and the BLEU scores im-
prove by 2.2-2.6 points (row 4 vs. row 5). When
analyzed by the first word of a question, ques-
tions beginning with have, do, and modal verbs
achieve the highest BLEU scores. Why-questions
achieve the lowest, probably due to many vari-
ants possible; for example, “why isn’t [SUBJECT]
[ADJECTIVE]?” is most likely to be transformed
to “[SUBJECT] is [ADJECTIVE]”, whereas “why
isn’t [SUBJECT] [VERB]?” is to “[SUBJECT]
should be [VERB]”.

One limitation of the rule-based method, how-
ever, is that it cannot distinguish between questions
that have the same syntactic structure but assert op-
posite propositions. For example, “Would you ...?”
can mean both “You would ...” and “You would
not ...” depending on the context. In order to sep-
arate these cases properly, we may need to take
into account more nuanced features and context,
and machine learning with large data would be the
most promising direction eventually.

5 Reported Speech

In this section, we extract speech content (i.e.,
propositions that are often asserted as the pri-
mary contribution to the argumentation) and speech
source in reported speech. This task is formulated
as sequence tagging: words that constitute speech
content or source are tagged with B followed by I,
and all other words are tagged with O.

5.1 Theoretical Background

Reported speech consists of speech content that
is borrowed from a speech source external to the

>Yet, we do not believe these rules would be effective be-
yond argumentation if the distribution of rhetorical questions
and pure questions is significantly different from argumenta-
tive dialogue.



speaker. Speech content can be a direct quote of
the original utterance or an indirect, possibly para-
phrased utterance. Reported speech is a common
rhetorical device in argumentation and performs
various functions, including:

e Appeals to authority by referencing experts or
rules (Walton et al., 2008) (e.g., “Environmen-
tal scientists proved that vegan diets reduce
meat production by 73%.”)

Sets a stage for dis/agreeing with the posi-
tion (Janier and Reed, 2017) (e.g., “You say
that you want attention, but, at the same time,
you don’t want me to bring attention to you.”)
Commits straw man fallacies by distorting the
original representation or selecting part of the
original utterance (Talisse and Aikin, 2006)

While reported speech as a whole is an assertion, its
primary contribution to the argumentation usually
comes from the speech content (e.g., “vegan diets
reduce meat production by 73%”), and the speech
source (e.g., “environmental scientists”) is used to
support the speech content.

Due to the important roles of speech content
and source, computational models have been pro-
posed to identify them, based on rules (Krestel
et al., 2008), conditional random fields (Pareti et al.,
2013), and a semi-Markov model (Scheible et al.,
2016). Our work is different from these studies
in two ways. First, they are based on news arti-
cles, whereas our work is on argumentative dia-
logue. Second, they use rules or features that re-
flect typical words and structures used in reported
speech, whereas our work explores a neural method
that does not require feature engineering. We aim
to show how well a state-of-the-art neural tech-
nique performs on extraction of speech content and
source. A slightly different but related strain of
work is to identify authority claims in Wikipedia
discussions (Bender et al., 2011), but this work
does not identify speech content and source.

5.2 Models

We explore three models: a conditional random
field (CRF) with hand-crafted features, the BERT
token classifier with a pretrained language model,
and a semi-Markov model as the baseline. For all
models, the input is a sequence of words and the
output is a BIO tag for each word. We conduct sep-
arate experiments for content and source, because
we do not assume that they are mutually exclusive
(although they are in most cases).
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5.2.1 Conditional Random Field (CRF)
Our CREF uses the following features:

Current word.

Named entity type of the word.

POS tag of the word.

Unigram and bigram preceding the word.
Unigram and bigram following the word.
Indicator of if the word is a subject (“nsubj*”
on the dependency parse tree).

Indicator of if the current word is the begin-
ning/end of a clause (“S” on the parse tree).

The features were extracted using Stanford
CoreNLP 0.9.2 (Manning et al., 2014).

For model parameters, we explore two optimiza-
tion functions: (i) L-BFGS with the combinations
of L1/L2 regularization coefficients {0, .05, .1, .2};
(i1) Passive Aggressive with aggressiveness param-
eter values {.5,1,2,4}. The model was imple-
mented using sklearn_crfsuite 0.3.6.

5.2.2 BERT

The second model is the BERT token classifier (De-
vlin et al., 2018), which classifies the tag of each
word. BERT has shown significant performance
boosts in many NLP tasks and does not require
hand-crafted features. We use the pretrained, un-
cased base model with the implementation pro-
vided by Hugging Face (Wolf et al., 2019). The
model is fine-tuned during training.

5.2.3 Baseline

The baseline is the state-of-the-art semi-Markov
model for speech content identification (Scheible
et al., 2016). This model first identifies cue words
(e.g., reporting verbs) and iteratively identifies the
boundaries of speech content using a set of hand-
crafted features. This model does not identify
speech sources and thus is compared with other
models only for content identification.

For a methodological note, the original source
code was hard-coded to work for the PARC3.0
dataset, and we could not replicate the model to
train on other data. Therefore, all accuracies of
this model in the next section result from training
it on the training set of the PARC3.0 dataset (Sec-
tion 5.3). We will show its performance on both
PARC3.0 and US2016.

5.3 Data

PARC3.0: The first dataset is 18,201 instances
of reported speech in news data (Pareti, 2016). The
original dataset was built upon the Wall Street



Journal articles in the Penn Discourse TreeBank
(PDTB) (Prasad et al., 2008), where each instance
of reported speech has been annotated with the con-
tent, source, and cue word (e.g., reporting verbs).
The reliability of the annotations were measured by
the overlap of annotated text spans between anno-
tators. The overlap for speech content is 94% and
that for speech source is 91%, suggesting the high
reliability of the annotations.

This dataset consists of 24 sections correspond-
ing to the PDTB sections. The original paper sug-
gests using sections 00-22 for training (16,370 in-
stances), section 23 for testing (667 instances), and
section 24 for validation (1,164 instances).

US2016: The second dataset is the instances of
reported speech in the corpus of the 2016 U.S. pres-
idential debates and commentary, prepared by Jo
et al. (2020)°. This dataset includes 242 instances
of reported speech annotated with speech content
and source. The reliability of the annotations was
measured by the number non-overlapping words
between annotators. The average number of words
that are outside of the overlapping text span was
0.2 for speech content and 0.5 for speech sources,
suggesting the high reliability of the annotations.

5.3.1 Experiment Settings

The CRF and BERT models are trained and tested
on both PARC3.0 and US2016, separately. For
PARC3.0, we use the split of train, validation, and
test as suggested by the original paper. For US2016,
we use 5-fold cross validation; for each iteration,
three folds are used for training, one for testing, and
the other for choosing the optimal hyperparameters
(CRF) or the optimal number of epochs (BERT).

The baseline model is trained and tested on
PARC3.0 using the same training, validation, and
test split. US2016 is used only for testing after it
is trained on the training set of PARC3.0 (as men-
tioned in 5.2.3).

We use various evaluation metrics. For speech
content, the F1-score is calculated based on the
true and predicted BIO tags of individual words, as
well as the BLEU score of the predicted text span
against the true text span. For speech sources, the
F1-score is calculated based on the match between
the true source’s text and the predicted text. Two
texts are considered matched if they are identical
(Strict) or if their words overlap (Relaxed). We
do not measure the F1-score based on BIO tags for

*https://github.com/yohanjo/lrec20
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PARC3.0 US2016
F1 BLEU Fl BLEU
Scheible (All) 64.4 57.1 37.9 234
Scheible (Matched) 75.8 72.7 79.3 76.5
CRF 71.3 66.3 72.5 68.7
BERT 82.6 82.0 87.1 89.3

(a) Accuracy of identifying speech content. The accuracies
of Scheible for US2016 (italic) result from training it on the
training data of PARC3.0.

PARC3.0 US2016
Strict F1 ~ Relaxed F1 ~ Strict F1 ~ Relaxed F1
CRF 52.4 59.8 62.4 71.6
BERT 71.0 78.6 70.3 84.8

(b) Accuracy of identifying speech source.

Table 2: Accuracy of identifying speech content and
source.

speech sources, because the source may be men-
tioned multiple times in reported speech and we
do not want to penalize the model when the men-
tion identified by the model is the true source but
different from the annotated mention.

5.4 Result

Content Identification: The accuracies of all
models are summarized in Table 2a. The base-
line model (Scheible) has two rows: row 1 is its
accuracy on all test instances, and row 2 is on test
instances where the model was able to identify
cue words. We find that the BERT model (row 4)
outperforms the feature-based CRF and the base-
line model for both corpora, achieving a macro F1-
score of 82.6% at tag levels and a BLEU score of
82.0% for PARC3.0 and an F1-score of 87.1% and
a BLEU score of 89.3% for US2016. These scores
show the high reliability of the BERT model for
extracting main propositions asserted in reported
speech. In addition, the high accuracy on US2016
despite its small size suggests that the pretrained
language model effectively encodes important se-
mantic information, such as reporting verbs and
dependencies among subject, verb, and object.
The baseline model, which was trained on
PARC3.0, performs poorly on US2016 (row 1).
The main obstacle is that it fails to detect cue words
(e.g., reporting verbs) in 168 out of 242 instances
(69%). This shows one weakness of the base-
line model: since this model works at two steps—
detect cue words and find content boundaries—
identifying speech content is strongly subject to
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cue word detection. When the baseline is evalu-
ated only on the instances where a cue word was
detected, its accuracy boosts significantly (row 2),
outperforming the CRF but still worse than BERT.

A qualitative analysis of the BERT model reveals
that most instances are tagged accurately, and er-
rors are concentrated on a few instances. One of the
main issues is whether a reporting verb should be
included or not as speech content. In the annotation
process for US2016, a reporting verb was included
as speech content only if the verb has meaning
other than merely “to report” (e.g., blamed his idea,
declared their candidacy). As a result, the model
often has difficulty judging a reporting verb to be
part of the speech content or not.

In some cases, the exact boundary of speech
content is ambiguous. For instance, in the sentence

“Bush has promised four percent eco-
nomic growth and 19 million new jobs
if Bush is fortunate enough to serve two
terms as president.”

the annotated speech content is in bold, while the
model included the if-clause as the content (under-
lined). However, it may seem more appropriate to
include the if-clause as part of the promise.

Source Identification: The accuracies of all
models are summarized in Table 2b. The BERT
model (row 2) again significantly outperforms the
CRF (row 1), achieving Fl-scores of 75.7% for
strict evaluation (exact match) and 85.1% for re-
laxed evaluation (overlap allowed). It is usually
when a source is a long noun phrase that a pre-
dicted source and the true source overlap without
exact match (e.g., President Obama vs. Obama).
Our qualitative analysis of the BERT model re-
veals two common error cases. First, the model
tends to capture subjects and person names as a
speech source, which is not correct in some cases:

“We have been told through investigative
reporting that he owes about $650 mil-
lion to Wall Street and foreign banks”

where the model identifies we as the speech source,
while the true source is the investigative report-
ing. The model also sometimes fails to detect any
source candidate if reported speech has an uncom-
mon structure, such as “The record shows that ...”
and “No one is arguing ... except for racists”, where
the speech sources are underlined. These problems
may be rectified with larger training data that in-
clude more diverse forms of reported speech.
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6 Imperatives

In this section, we collect imperatives in argumen-
tative dialogue and examine a simple method for
extracting propositions asserted in them. We do
not build automated models for transformation (as
in questions), because US2016 had no clear guide-
lines on how to annotate asserted propositions in
imperatives when the dataset was built.

6.1 Theoretical Background

Imperatives are common in argumentation as in
“Stop raising the sales tax” and “Look how bad the
system is”. However, to our knowledge, there is lit-
tle theoretical work on what propositional content
is asserted by imperatives in argumentation. There
have been theories about the semantics of imper-
atives in general context; for example, the you-
should theory suggests that an imperative of the
form “Do X may imply “X should be done” (Ham-
blin, 1987; Schwager, 2005). While applicable
in many general cases, this mechanism is not sat-
isfactory in argumentation. For instance, while
this transformation preserves the literal meaning of
both the first and second examples above, it does
not capture the main proposition asserted in the sec-
ond example. This example is unlikely arguing for
“looking” per se; it rather asserts that the system is
bad, which is the main content that contributes to
the argumentation. No simple transformation rules
apply here, and such irregularities call for more
case studies. Our work aims to make an initial
contribution in that direction.

6.2 Model

No automated model is used in this section, but
instead, we examine the applicability of the you-
should theory in argumentation. Specifically, we
analyze whether each imperative preserves the orig-
inal intent when it is transformed to an assertive by
adding “should”, along with appropriate changes
in the verb form, (implicit) subject, and object. We
additionally analyze the argumentative relevancy
of the transformed verb, that is, whether the imper-
ative is mainly asserting that it should happen.

6.3 Data

We use imperatives in US2016 (Jo et al., 2019).
We assume that a sentence is an imperative if its
root is a verb in the bare infinitive form and has
no explicit subject. Using Stanford CoreNLP, we
chose locutions that are not questions and whose



Top 1-8 Top 9-16 Top 17-24 Top 25-32
let (39) fuck (5) say (3) bring (2)
look (7) stop (5) ask (2) love (2)
have (7) do (4) vote (2) drink (2)
wait (6) check (3) help (2) pay (2)
thank (6) give (3) keep (2) are (2)
please (6) make (3) find (2) believe (2)
go (5) get (3) think (2) talk (2)
take (5) use (3) forget (2) screw (2)

Table 3: Root verbs and counts in imperatives.

root is a verb with base form or second-person
present case (VB/VBP), neither marked (e.g., to
go) nor modified by an auxiliary modal verb (e.g.,
would go). We found total 191 imperatives, and the
most common root verbs are listed in Table 3.

6.4 Result

We found that 74% of the imperatives can be trans-
formed to an assertion by adding should while pre-
serving their original meaning’. And 80% of the
transformed assertions were found to be argumenta-
tively relevant content. For example, the imperative
“Take away some of the pressure placed on it” can
be transformed to (and at the same time asserts that)
“some of the pressure placed on it should be taken
away”. This result suggests that we can apply the
you-should theory to many imperatives and extract
implicitly asserted propositions in consistent ways.

Some imperatives were found to be rather rhetor-
ical, and the propositions they assert cannot be
obtained simply by adding should. Those imper-
atives commonly include such verbs as let, fuck,
look, wait, and have. The verb let can assert dif-
ferent things. For instance, “Let’s talk about the
real issues facing america” asserts that “there are
real issues facing america”, while “Let’s solve
this problem in an international way” asserts that
“we should solve this problem in an international
way”. The words fuck and screw are used to show
strong disagreement and often assert that some-
thing should go away or be ignored.

We cannot apply the same transformation rule to
the same verb blindly, as a verb can be argumen-
tatively relevant sometimes and only rhetorical at
other times depending on the context. For instance,
the verb take in the above example is argumenta-
tively relevant, but it can also be used only rhetori-
cally as in “Take clean energy (as an example)”.

"Many of the other cases are attributed to subject drop
(e.g., “Thank you”, “Doesn’t work”) and CoreNLP errors (e.g.,
“Please nothing on abortion”, “So do police jobs™).
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Based on our analyses, we propose rough two-
step guidelines for annotating propositions that are
implicitly asserted in imperatives. First, we may
group imperatives by their semantics based on the-
ories, such as you-should and you-will (Schwager,
2005). Second, for these imperatives, we may an-
notate whether the root verb is argumentatively
relevant. For instance, if the you-should theory
is applicable to an imperative, we may annotate
whether its verb is at the core of the main argu-
mentative content that the speaker asserts should
happen; the assertive form of this imperative is
likely to be a statement that proposes a policy or ac-
tion (Park and Cardie, 2018). Argumentatively rel-
evant imperatives may be annotated with asserted
propositions using predefined transformation tem-
plates appropriate for their semantics. On the other
hand, argumentatively irrelevant verbs may simply
be rhetorical and need to be replaced properly. An-
notation of these imperatives should handle many
irregular cases, relying on the domain of the argu-
mentation and the annotator’s expertise.

7 Conclusion

Identifying implicitly asserted propositions in ar-
gumentation is key to understanding arguments
properly. We presented and tested computational
methods for extracting implicit propositions from
questions and reported speech in argumentation.
For transforming questions to propositions, hand-
crafted rules were significantly more effective than
neural models and provided insights into the regu-
larities in how propositions are implicitly asserted
in question form. Since rule-based methods do
not take context into account, however, more an-
notated data would be needed for better question
transformation based on machine learning. For re-
ported speech, BERT-based models demonstrated
high effectiveness in identifying speech content and
source by utilizing the rich semantic information
in the pretrained model. Lastly, for imperatives,
we demonstrated some regularities and irregulari-
ties in how propositions are asserted in imperatives.
We find evidence that some verbs may need to be
treated specially, while many other verbs could be
treated in consistent ways.
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Appendices
A Reproducibility Checklist

Model settings for extracting implicit propositions
from questions (Table 1) are summarized in Table
4.

Model settings for extracting speech source from
reported speech (Table 2b) are summarized in Table
5.

Model settings for extracting speech content
from reported speech (Table 2a) are summarized in
Table 6.

35



Basic Copy

Criterion US2016 MoralMaze US2016 MoralMaze
Computing infrastructure Intel(R) Core(TM) 17-8700K CPU @ 3.70GHz / 31GiB System memory

/ NVIDIA GP102 [TITAN Xp]
Number of parameters 4,680,010 3,248,580 4,680,203 3,248,773
Validation performance BLEU=10.7 BLEU=11.6 BLEU=47.1 BLEU=49.7
Encoder/decoder hidden dim {96, 128, 160, 192} 192 {128, 192} 192
Other hyperparameters Beam size: 4

Optimizer: Adam
Learning rate: 0.001
Gradient clipping: 1
Word embedding: GloVe 840B

Optimal encoder/decoder hid- 192 192 192 192
den dim
Number of hyperparameter 4 (No hyperparameter 2 (No hyperparameter
search trials search) search)
Method of choosing hyperpa- Grid search
rameter values
Criterion for selecting opti- BLEU
mal hyperparameter values

Table 4: Reproducibility checklist for question transformation (Table 1).

CRF BERT
Criterion PARC3.0 US2016 PARC3.0 US2016
Computing infrastructure 3.1 GHz Dual-Core Intel Core i7 Intel(R) Core(TM) i7-8700K CPU
/16 GB 1867 MHz DDR3 @ 3.70GHz

/ 31GiB System memory
/ NVIDIA GP102 [TITAN Xp]

Average runtime 17.6 mins 0.03 mins 314.6 mins 11.9 mins
Number of parameters 173,749 7,569 108M
Validation performance F1=75.7, F1=75.6, F1=84.4, F1=88.1,
BLEU=72.2 BLEU=72.5 BLEU=83.8 BLEU=90.4
Bounds for hyperparameters (i) Optimization function: L-BFGS, Learning rate: le-5,
L1/L2 regularization Adam €: 1le-8

coefficients: {0,.05,.1,.2}
(ii) Optimization function:
Passive Aggressive,
Aggressive parameter values:

{.5,1,2,4}
Optimal  hyperparameter L-BFGS + L1=0.1 + L-BFGS + L1=0.05 Learning rate=1e-5 + Adam e=1e-8
configuration L2=0.2 +1L.2=0.1
Number of hyperparameter 20 (No hyperparameter search)
search trials
Method of choosing hyper- Grid search (No hyperparameter search)
parameter values
Criterion for selecting opti- F1 (No hyperparameter search)

mal hyperparameter values

Table 5: Reproducibility checklist for extracting speech content from reported speech (Table 2a).
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CRF BERT
Criterion PARC3.0 US2016 PARC3.0 US2016
Computing infrastructure 3.1 GHz Dual-Core Intel Core i7 Intel(R) Core(TM) 17-8700K CPU
/16 GB 1867 MHz DDR3 @ 3.70GHz

Average runtime
Number of parameters
Validation performance

12.6 mins
289,631
Strict F1=61.7, Strict F1=68.3,

Relaxed F1=67.8 Relaxed F1=74.6

0.02 mins
7,250

/ 31GiB System memory
/ NVIDIA GP102 [TITAN Xp]
314.7 mins 15.7 mins
108M
Strict F1=76.3,
Relaxed F1=89.1

Strict F1=75.0,
Relaxed F1=80.7

Bounds for hyperparameters

Optimal  hyperparameter
configuration

Number of hyperparameter
search trials

Method of choosing hyper-
parameter values

Criterion for selecting opti-
mal hyperparameter values

(i) Optimization function: L-BFGS,
L1/L2 regularization
coefficients: {0,.05,.1,.2}
(ii) Optimization function:
Passive Aggressive,
Aggressive parameter values:
{5,1,2,4}
Passive Aggressive +
Aggressive=1 L2=0.2
20

Grid search

Strict F1

L-BFGS + L1=0 +

Learning rate: le-5,
Adam e: le-8

Learning rate=1e-5 + Adam e=1e-8
(No hyperparameter search)
(No hyperparameter search)

(No hyperparameter search)

Table 6: Reproducibility checklist for extracting speech source from reported speech (Table 2b).
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B Question Transformation Rules

From To

why [MD]1 [SBJ]2 [*]3? [SBJ]2 [MD]; not [*]s.

why [MD]; not [SBI]2 [*]5? [SBJ]2 [MD]1 [*]s.

why do [SBJ]1 [*]2? [SBI]1 [*]2.

why [does|did]; [SBJ]2 [*]s? [SBJ]2 [does|did]; [*]s.

why is [SBJ]1 [*]2? [SBI]1 is [*]2 because xxx.

why [are|were|was]y [SBI]2 [*]3? [SBIJ]: [are|were|was]1 [*]s.
why [is|are|am]; not [SBJ]2 [ADJ]3? [SBJ]2 [is|are|am]; [ADJ]s.
why [is|are|am]; not [SBJ]2 [VP]3? [SBJ]2 should be [VP]s.

why not [VP],? should [VP];.

where [do|did|does|MD]y [SBJ]2 [*]3? [SBJ]2 [do|did|does|MD]; [*]3 at xxX.
when [did|has]: [SBJ]2 [*]3? [SBJ]2 [did|has]; not [*]s.

how can [SBJ]; [*]2? [SBJ]1 cannot [*]2.

how [MD\can]; [SBJ]2 [*]3? [SBJ]2 [MD\can]; [*]3 by xxx.
how [do|does]: [SBI]2 [*]3? [SBJ]2 [*]s by xxx.

how [MD|do|does|did]: [SBJ]2 not [*]3? [SBJ]2 should [*]5.

how are [SBJ]; going to [*]2? [SBJ]1 need to [*]2.

how are [SBJ]; supposed to [*]2? [SBJ]; cannot [*]s.

how [am|are|is]: [SBJ]2 not [*]3? [SBI]2 should be [*]s.

how much [*];? XXX [*]1.

how [ADJ|ADV]; [VB|MD]s [SBJ]5 [VP]4?  [SBI]s [VB|MD]s [VP]s.

what [MD|did]1 [SBJ]2 [VB]3 [*]4? [SBJ]2 [MD|did]1 [VB]s xxx [*]4.
what [does|do]; [SBJ]2 [VB]s [¥]4? [SBJ]2 [VB]3 xxX [*]4.

what am [SBJ]1 [VB]2 [¥]5? [SBJ]; am [VB]s xxx [*]s.
what [is|was|are]: [SBJ]2? [SBJ]2 [is|was|are]; xxx.

what [VB\did|does|do|am|waslis|are]; [*]2?  xxx [VB\did|does|do|am|wasl|is|are]1 [*]2.
which [¥\VB]; [¥]3? [¥\VB]; Xxx.

which [*\VB]; [VB]z [SBJ]3 [*]4? [SBJ13 [VB]2 [*]4 [*\VB]1 xxx.
who [VB]: [SBJ]2 [VP]3? [SBJ]> [VB]1 [VP]3 xxx.

who is [SBJ]1? [SBI]; is xxx.

who is [VP]1? xxx is [VP];.

who [*\is]1 [*]2? xxx [*¥\is]1 [*]2.

have you not [*];? you have not [*];.

[have|has]; [SBJ\you]s [*]3? [SBJ\you]z [have|has]; [*]s.

is [SBJ]1 [NP]2? [SBI]; is [NP]2.

is [SBJ]1 [*\NP]2? [SBJ]1 is/ is not [*\NP]s.

are [SBJ]1 [*]2? [SBJ]; are not [*]s.

[was|were]; [SBI]2 [*]3? [SBJ]2 [was|were]; [*]s.
[is|are|was|were]1 not [SBJ]2 [*]3? [SBJ]2 [is|are|was|were]1 [*]3.
can [SBJ]1 [VP]2? [SBJ]: can [VP]a.

[MD\can]; [SBJ]2 [VP]5? [SBJ]2 [MD\can]; / [MD\can]; not [VP]s.
[MD]: not [SBJ]2 [VP]5? [SBJ]2 [MD]: [VP]s.

does [SBJ]; [VP]2? [SBI]; does not [VP]s.
[does|do]; not [SBJ]z [VP]3? [SBI]2 [VP]s.

[does|do]; [SBJ]2 not [VP]3? [SBJ]2 [VP]s.

do [SBI]1 [VP]2? [SBJ]1 do / do not [VP]o.

did [SBI]1 [*]2? [SBI]; did not [*]a.

did not [SBJ]1 [¥]2? [SBJ]: did not [+]s.

Table 7: A summary of question transformation rules. Some rules have been combined into one rule expression
for clarity. (Notations) SBJ: subject, MD: modal verb, VB: verb, VP: verb phrase, ADJ: adjective, ADV: adverb,
NP: noun phrase, backslash (\): exclusion. “xxx” and a forward slash indicate being semantically underspecified
(Section 2).
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