
Proceedings of the 28th International Conference on Computational Linguistics, pages 5799–5809
Barcelona, Spain (Online), December 8-13, 2020

5799

Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training

Yingyao Wang1∗, Junwei Bao2, Guangyi Liu3, Youzheng Wu2,
Xiaodong He2, Bowen Zhou2, Tiejun Zhao1

1Harbin Institute of Technology, Harbin, China
2JD AI Research, Beijing, China

3The Chinese University of Hong Kong, Shenzhen, China
{baojunwei,wuyouzheng1,xiaodong.he,bowen.zhou}@jd.com

yywang@hit-mtlab.net,gy-liu@foxmail.com,tjzhao@hit.edu.cn

Abstract

This paper aims to enhance the few-shot relation classification especially for sentences that
jointly describe multiple relations. Due to the fact that some relations usually keep high co-
occurrence in the same context, previous few-shot relation classifiers struggle to distinguish them
with few annotated instances. To alleviate the above relation confusion problem, we propose
CTEG, a model equipped with two mechanisms to learn to decouple these easily-confused re-
lations. On the one hand, an Entity-Guided Attention (EGA) mechanism, which leverages the
syntactic relations and relative positions between each word and the specified entity pair, is in-
troduced to guide the attention to filter out information causing confusion. On the other hand, a
Confusion-Aware Training (CAT) method is proposed to explicitly learn to distinguish relations
by playing a pushing-away game between classifying a sentence into a true relation and its con-
fusing relation. Extensive experiments are conducted on the FewRel dataset, and the results show
that our proposed model achieves comparable and even much better results to strong baselines in
terms of accuracy. Furthermore, the ablation test and case study verify the effectiveness of our
proposed EGA and CAT, especially in addressing the relation confusion problem.

1 Introduction

Relation classification (RC) aims to identify the relation between two specified entities in a sentence.
Previous supervised approaches on this task heavily depend on human-annotated data, which limit their
performance on classifying the relations with insufficient instances. Therefore, making the RC models
capable of identifying relations with few training instances becomes a crucial challenge. Inspired by the
success of few-shot learning methods in the computer vision community (Vinyals et al., 2016; Sung et al.,
2017; Santoro et al., 2016) and some other natural language processing tasks (Chen et al., 2016; Qin et
al., 2020; Zhou et al., 2019), Han et al. (2018) first introduce the few-shot learning to RC task and propose
the FewRel dataset. Recently, many works focus on this task and achieve remarkable performance (Gao
et al., 2019a; Snell et al., 2017; Ye and Ling, 2019).

Previous few-shot relation classifiers perform well on sentences with only one relation of a single
entity pair. However, in real natural language, a sentence usually jointly describes multiple relations of
different entity pairs. Since these relations usually keep high co-occurrence in the same context, previous
few-shot RC models struggle to distinguish them with few annotated instances. For example, Table 1
shows three instances from the FewRel dataset, where each sentence describes multiple relations with
corresponding keyphrases highlighted (colored) as evidence. When specified two entities (bold black)
in the sentence, there is a great opportunity for the instance to be incorrectly categorized as a confusing
relation (red) instead of the true relation (blue). Specifically, the first instance should be categorized as
the true relation ‘parents-child’ based on the given entity pair and natural language (NL) expression ‘a
daughter of ’. However, since it also includes the NL expression ‘his wife’, it is probably misclassified
into this confusing relation ‘husband-wife’. In this paper, we name it as a relation confusion problem.

∗This work is done during the first author’s internship in JD AI Research.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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True Relation Confusing Relation Instance

parents-child husband-wife She was a daughter of prince Wilhelm of Baden and his wife princess
Maria of Lichtenberg, as well as an elder sister of prince Maximilian.

husband-wife uncle-nephew He was the youngest son of Prescott Sheldon Bush and his wife Dorothy
Walker Bush, and the uncle of former president George W Bush.

uncle-nephew parents-child Snowdon is the son of princess Margaret, countess of Snowdon, and the
1st earl of Snowdon, thus he is the nephew of queen Elizabeth ii.

Table 1: Example sentences containing confusing relations. Their specified entities are marked as italics
in bold. The blue and red words respectively correspond to true and confusing relations.

To address the relation confusion problem, it is crucial for a model to be aware of which NL expres-
sions cause confusion and learn to avoid mapping the instance into its easily-confused relation. From
these perspectives, we propose two assumptions. Firstly, in a sentence, words that keep high relevance
to the given entities are more important in expressing the true relation. Secondly, explicitly learning
of mapping an instance into its confusing relation with augmented data in turn boosts a few-shot RC
model on identifying the true relation. Based on these assumptions, we propose CTEG, a few-shot RC
model with two novel mechanisms: (1) An Entity-Guided Attention (EGA) encoder, which leverages the
syntactic relations and relative positions between each word and the specified entity pair to softly select
important information of words expressing the true relation and filter out the information causing con-
fusion. (2) A Confusion-Aware Training (CAT) method, which explicitly learns to distinguish relations
by playing a pushing-away game between classifying a sentence into a true relation and its confusing
relation. In addition, inspired by the success of pre-trained language models, our approaches are based
on BERT (Devlin et al., 2018), which has been proved effective especially for few-shot learning tasks.

Specifically, the backbone of the encoder of our model is a transformer equipped with the proposed
EGA which guides the calculation of self-attention distributions by weighting the attention logits with
entity-guided gates. The gates are used to measure the relevance between each word and the given two
entities. Two types of information for each word are used to calculate its gate. One is the relative position
(Zeng et al., 2015a) information, which is the relative distance between a word and an entity in the input
sequence. The other is syntactic relation which is proposed in this paper, defined as the dependency
relations between each word and the entities. Based on these information, the entity-guided gates in
EGA are able to select those important words and control the contribution of each word in self-attention.

We also propose CAT to explicitly force the model to asynchronously learn the classification from an
instance to its true relation and its confusing relation. After each training step, the CAT first selects those
misclassified sentences, and regards the relations they are misclassified into as the confusing relations.
After that, The CAT uses these misclassified instances and their confusing relations as augmented data
to conduct an additional training process, which aims to learn the mapping between these instances into
the confusing relations. Afterwards, the CAT adopts the KL divergence (Kullback and Leibler, 1951) to
teach the model to distinguish the difference between the true and confusing relations, which benefits the
true relation classification from the confusing relation identification.

The contributions of this paper are summarized as follows: (1) We propose an Entity-Guided Attention
encoder, which can select crucial words and filter out NL expressions causing confusion based on their
relevance to the specified entities. (2) We propose a Confusion-Aware Training process to enhance
the model with the ability of distinguishing true and confusing relations. (3) We conduct extensive
experiments on few-shot RC dataset FewRel, ans the results show that our model achieves comparable
and even much better results to strong baselines. Furthermore, ablation and case studies verify the
effectiveness of the proposed EGA and CAT, especially in addressing the relation confusion problem.

2 Methodology

2.1 EGA: Entity-Guided Attention Encoder

The inputs of our model include a sentence S = w1, ..., wn with n words, and two pairs of integers
s1 = (l1, r1) and s2 = (l2, r2) representing the start and end positions of the two specified entities.
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Figure 1: The framework of our model CTEG including Entity-Guided Attention (EGA) and Confusion
Aware Training (CAT) mechanisms.

Chen-chun-chang  is  a  mathematician  who  works  in  model-theory

nsubj acl:relcl nmod

cop det nsubj case

(a)

Chen-chun-chang  is  a  mathematician  who  works  in  model-theory

nsubj acl:relcl nmod

cop det nsubj case

(b)
Figure 2: The dependency tree of a sentence and the paths used as syntactic relations in EGA.

Firstly, we convert the words into a sequence of vectors ew1 , ..., e
w
n , using an embedding layer initialized

by BERT. We then use two types of relevance information, i.e., relative position and syntactic relation,
between each word and the specified entity pair to construct entity-guided gates for information selection.

Relative Position. Relative position information is typically used in relation classification task (Zeng
et al., 2015a), which is defined as the relative distances pos1 and pos2 from the current word to the two
specified entities in the sentence. The relative position information of the i-th word is represented as
eposi = [epos1i , epos2i ], where epos1i , epos2i ∈ Rdpos are the embeddings of pos1 and pos2.

Syntactic Relation Except for the relative position, we further introduce the syntactic relations to mea-
sure the relevance between each word and the specified entities. The syntactic relations are derived based
on dependency parse trees, which are obtained from the Standford Parser1. For example, Figure 2(a)
shows the original dependency tree of the sentence “Chen-chun-chang is a mathematician who works in
model-theory”, where “Chen-chun-chang” and “model-theory” are entities. In this paper, we assume
that words that directly connect to the given entities are more important in expressing the true relations.
Therefore, dependency relations that connect the specified entities and other words are remained and the
others are discarded, which derives a pruned dependency tree, as one shown in Figure 2(b). Based on the
pruned dependency tree, each word in the sentence is assigned two tags ti = (ti,1, ti,2) as the proposed
syntactic relations. Taking the tag ti,1 of word wi which corresponds to the first entity as an example, if
wi is part of the first entity, the tag ti,1 is assigned the value ‘self ’, and if wi is directly connected to the
first entity in the dependency tree, ti,1 is assigned the dependency relation, e.g., ‘nmod’. In addition, if
wi is neither connected to nor part of the first entity, ti,1 is assigned ‘other’. Based on the above strategy,
the syntactic relations of the sentence in Figure 2 are shown in Table 2. Finally, the two dependency

1https://nlp.stanford.edu/software/lex-parser.shtml
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Words chen chun chang is a mathematician who works in model theory

ti,1 self other other nsubj other other other other
ti,2 other other other other other nmod case self

Table 2: The syntactic relations corresponding to each word of the given sentence.

tags of each word ti = (ti,1, ti,2) are converted into continuous vectors based on an embedding lookup
operation, and then concatenated into a vector esyni = [esyn1i , esyn2i ], where esyn1i , esyn2i ∈ Rdsyn .

Entity-Guided Gate The proposed EGA learns entity-guided gates G = (g1, ..., gn) for all words
in a given sentence based on the above two types of information. Intuitively, if a word wi is directly
connected to the given entities in the dependency tree, the corresponding information tends to be more
important. Specifically, the relative position embedding and the syntactic relation embedding are first
concatenated into epi = [eposi , esyni ], where epi ∈ R2dpos+2dsyn . We then adopt a transformer encoder
(Vaswani et al., 2017) followed by a single layer feed-forward neural network (FNN) with sigmoid(·)
activation to derive a sequence of entity-guided gates as follows:

(hp
1, ...,h

p
i , ...,h

p
n) = TransEnc(ep1, ..., e

p
i , ..., e

p
n) (1)

gi = sigmoid(W ghp
i + bg) (2)

Gated Self-Attention A pre-trained transformer encoder with M layers equipped with the proposed
EGA is used to learn the representation for a sentence. The backbone of each layer is a self-attention
layer, which calculates attention weights for word pairs in the sentence. We define self-attention weights
of the tth-layer as Attt, and the corresponding hidden states of the sentence is represented as Ht.

To obtain the attention weights Attt, the scaled attention scores QtKt>
√
dk

is multiplied by the entity-
guided gate G with broadcasting followed by a softmax(·) operation. The gated self-attention and the
calculation ofHt are formalized as follows, whereWk,Wq,Wv are trainable parameters.

(Qt,Kt,V t) = (Wq,Wk,Wv)Ht−1 (3)

Attt = softmax(
QtKt> ⊗G√

dk
) (4)

Ht = AtttV t (5)

Finally, vector s as the representation of the sentence is obtained based on Equation 6, where HM

represents the output of the M -th layer of the encoder.

s = maxpooling(HM ) (6)

2.2 Classification
The classifier performs N -way-K-shot classification following few-shot learning paradigm and the pro-
totypical network (Snell et al., 2017). Specifically, for a relation rj where j ∈ [1, N ], K sentences
are sampled from its instances firstly, and then these sentences are used to calculate the representation
named prototype cj of the relation. We define the representations of the K sentences as scj,1, ..., sj,K

c,
and prototype cj is calculated as follows:

cj =
1

K

K∑
k=1

scj,k (7)

Given the representation sq of a sentence as query and the prototypes (c1, ..., cN ) of N relations, the
model aims to classify sq into one of the N candidate relations. We first obtain the distance distribution
δ = (δ1, ..., δN ) by calculating the Euclidean Distance between sq and each prototype. Then, according
to δ, the sentence will be classified into the nearest relation r̂.

δ = (‖sq − c1‖2 , ..., ‖sq − cN‖2) (8)
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r̂ = arg min
j

(δ) (9)

To enable the classifier to learn confusing relations, we further project the distance distrubution δ into δ̄
via a FFN with a tanh(·) activation function defined as follows. The δ̄ is used to predict the confusing
relation defined as r̄ during a confusion-aware training (CAT) stage which is introduced in Section 2.3.

δ̄ = tanh(W cδ + bc) (10)

2.3 CAT: Confusion-Aware Training
The confusion-aware training is based on two asynchronous processes: true relation identification and
confusing relation identification. During classifying a sentence, the former uses its true relation as the
target, and the latter uses its confusing relation as the target. Specifically, given a sentence with its true
relation as r, the training objective of the true relation identification is defined as:

L = CrossEntropy(OneHot(r), Softmax(δ)) (11)

For the confusing relation identification, we first pick up those misclassified sentences after each training
step of true relation identification, and use their prediction results as the targets. In formulation, as-
suming the sentence is misclassified into an incorrect r̄, the objective function of the confusing relation
identification L̄ is defined as:

L̄ = CrossEntropy(OneHot(r̄), Softmax(δ̄)) (12)

Besides, the KL divergence is adopted as another objective function, which allows the model to learn to
perform confusion decoupling. The KL divergence has the ability to push away the distance distribution
δ and δ̄, and the formula is defined as follows:

Lkl = −KL(Softmax(δ), Softmax(δ̄)) (13)

Through minimizing Lkl, the model is able to explicitly learn to distinguish relations by playing a
pushing-away game between classifying a sentence into a true relation and its confusing relation. In
other words, our model learns to explicitly decouple r and r̄ for classification based on specified entities
in a given sentence. It is worth noting that, only those misclassified sentences are used for updating the
objective Lkl. The final objective function of our model Lall is defined as Lall = L+ L̄+ Lkl.

3 Experiments

In this section, we report our experiment results from the following four aspects. We first show the
comparison results of our model CTEG and baselines on FewRel dataset in Section 3.3. We then demon-
strate the effectiveness of the proposed entity-gated attention (EGA) and confusion-aware training (CAT)
through the ablation studies in Section 3.4. In order to more intuitively and clearly show the role of EGA
and CAT, we show their visualized examples in case study in Section 3.5. Furthermore, we verify that
our model is capable of addressing the relation confusion problem to some extent in Section 3.6.

3.1 Implementation Details
Dataset The FewRel dataset (Han et al., 2018) contains 100 relations, which are split up into 64 for
training, 16 for validation and 20 for testing. Each relation has 700 instances generated by distant super-
vision (Mintz et al., 2009). All the instances are annotated with a specified entity pair.

Settings The dimension of word embedding is set to 768 for consistency with the base model of
BERT (Devlin et al., 2018). The max length of the input is set to 100. Following BERT, the layer
number M of the transformer encoder with EGA is 12, and all parameters in it is initialized with the
pretrained BERT model. The relative position and syntactic relation embedding dimensions are both set
to 50, and the transformer encoder for obtaining entity-guided gates is set up with hidden size as 230,
head number of self-attention as 2. In addition, the model is optimized by Adam algorithm with the
learning rate and the weight decay as 1× 10−5 and 1× 10−6, respectively.
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Model 5-way-1-shot 5-way-5-shot 10-way-1-shot 10-way-5-shot

Proto (Han et al., 2018) 72.65 / 74.52 86.15 / 88.40 60.13 / 62.38 76.20 / 80.45
Proto-HATT (Gao et al., 2019a) 75.01 / −− 87.09 / 90.12 62.48 / −− 77.50 / 83.05
MLMAN (Ye and Ling, 2019) 78.85 / 82.98 88.32 / 92.66 67.54 / 73.59 79.44 / 87.29
BERT-PAIR (Gao et al., 2019b) 85.66 / 88.32 89.48 / 93.22 76.84 / 80.63 81.76 / 87.02
CTEG (This work) 84.72 / 88.11 92.52 / 95.25 76.01 / 81.29 84.89 / 91.33

w/o CAT 83.79 91.71 74.25 84.46
w/o EGA 72.94 86.71 61.88 77.03

w/ Pos 82.31 91.44 72.41 83.98
w/ Syn 83.61 91.78 73.94 84.89

Table 3: The main classification accuracy of baselines and our model are shown in Validation / Test
format, where the test results are from FewRel public leaderboard3. All ablation results reported in this
section are on the validation set.

3.2 Baselines

We implement four baselines on FewRel dataset: Proto, Proto-HATT (Gao et al., 2019a), MLMAN
(Ye and Ling, 2019) and BERT-PAIR (Gao et al., 2019b). All the baselines are based on the few-shot
learning framework. Specifically, for each training step, N relations are first sampled from the training
set. For each of the above relation, K out of 700 instances are sampled to construct a supporting set,
based on which a relation representation named prototype is calculated. Given an instance of the N
relations to be classified, the models classify it by calculating the distances from it to N prototypes.

Proto & Proto-HATT Both of the two models adopt the convolutional neural network (CNN) as en-
coders. Proto calculates the prototype by averaging the representations of theK-instances in the support-
ing set, and classify the query using the Euclidean Distance. Differently, Proto-HATT further proposes
a hybrid attention scheme which includes an instance-level attention and a feature-level attention, where
the former is used to highlight the crucial support sentences in calculating the prototype, and the latter is
to select more efficient features when calculating distances.

MLMAN Different from the Proto and Proto-HATT, MLMAN encodes each query and the supporting
set in an interactive way by considering their matching information on multiple levels. At local level,
the representations of an instance and a supporting set are matched following the sentence matching
framework (Chen et al., 2017b) and aggregated by max and average pooling. At instance level, the
matching degree is first calculated via a multi-layer perception (MLP). Then, taking the matching de-
grees as weights, the instances in a supporting set are aggregated to obtain the class prototype for final
classification.

BERT-PAIR This model is based on the sentence classification model in BERT. The sentence to be
classified is first paired with all the supporting instances, and then each pair is concatenated to a sequence.
BERT takes this sequence as input and returns a relevance score, which is used to measure whether the
given sentence expresses the same relation with the corresponding supporting instance.

3.3 Comparison with Baselines

Same as Proto, we set N = 5, 10 and K = 1, 5 for NvK few-shot learning. Average accuracy is used as
the evaluation metric to evaluate the relation classification performance. The results in Table 3 show that
our model EGA with CAT, named CTEG, outperforms the three strong baselines including Proto, Proto-
HATT and MLMAN by a significant margin on all the settings. These improvements are mainly brought
by our EGA and CAT, which help the model to classify those easily-confused instances into correct ones.
In addition, applying pre-trained BERT also contributes to improving the performance. Compared with
BERT-Pair, our CTEG achieves better result on 5v5, 10v1 and 10v5 settings and comparable results on
5v1 settings on the test set, while on the dev set our CTEG is slight lower than BERT-pair on 5v1 and
10v1 settings. We think that the lower performance on the dev set on 5v1 and 10v1 is due to the fact that
BERT-Pair encodes two sentences together which benefits for information fusion, while models based
on prototypical network rely on larger K supporting facts to get a better prototype.
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3.4 Ablation Study

We conduct ablation study and show the results in Table 3. Firstly, we turn off the CAT of our full model,
which is represented as “w/o CAT”. In this case, the average results drops 0.43-1.76 point on the four
settings. These drops indicate that the CAT has the ability to improve the classification performance. We
then report three groups of results to verify the effectiveness of EGA. Specially, our model without EGA
which only adopts the BERT as the encoder is denoted as “w/o EGA”. It is worth noting that in this case,
the model can not identify which words in a given sentence are entities. When the EGA is removed,
the performance decreases obviously by 5.81-14.13 point. It is proved that the entity information is
crucial for relation classification. Furthermore, “w/ Pos” means the entity-guided gates in EGA are
calculated only using the relative position information, and “w/ Syn” only using the syntactic relation
information. Compared with “w/o EGA”, the results of these two groups are significantly improved.
It shows that the syntactic relation information is more powerful than the relative position information,
which means considering the dependency relations between each word and the specified entity pair boosts
the performance of simply adopting traditional relative position information. In addition, it can be seen
that the smaller size of the supporting set (1-shot v.s. 5-shot), the more absolute gain our CAT and
EGA modules achieve. This phenomenon shows that our method performs well with fewer available
supporting instances.

Model CTEG w/ Syn QGG CTEG FHG

5-way-5-shot 91.78± 0.22 90.64± 0.28 92.52± 0.31 90.57± 0.11

Table 4: Ablation Results on How, What, and When to Gate.

How to Gate The self-attention mechanism is used to update the representation of each query word
by fusing the information of all key words in a given sentence. In this process, an attention score is
calculated to leverage the contribution of each key word. In this paper, we propose to use gates to further
adjust these attention scores. In our proposed EGA, each entity-guided gate reflects the relation between
the key word and the specified entity pair, which is different for all key words. We also implement a
baseline QGG with query-guided gates, where each gate reflects the relation between the key word and
the query word. Specifically, the relation is modeled based on their syntactic relation if the key word is
a specified entity, otherwise a ‘other’ relation. The results of using these two kinds of gates in Table 4
shows that our model CTEG w/ Syn only modeling syntactic relations outperforms the QGG baseline,
which further verifies that our EGA with entity-guided gates has the ability of effectively leveraging
specified entity information to select input information.

What and When to Gate In our EGA, the entity-guided gates are used since the beginning of the
encoding process by multiplying them with the self-attention scores in each transformer layer. It means
that the information of the words is selected during learning the representation of them. Another baseline
is to multiply gates with the Final transformer Hidden states of the words as Gating mechanism, which
is defined as FHG. In this case, the information of all words has been fully fused before adopting gating
mechanism for selection. As the results shown in Table 4, compared with our model CTEG, the accuracy
of the FHG drops 1.95 point. The results indicate that earlier to gate the attention score during encoding
as our EGA is more reasonable than only to adopt gating at the final hidden states.

3.5 Case Study

EGA visualized example The entity-guided gates in EGA are expected to emphasize the words which
are more related to the true relation. To verify the effectiveness of EGA intuitively, we show the entity-
guided gates heat map of a given instance in Figure 3. This instance is sampled from ’parent-children’
relation in the validation set of FewRel. As shown in the map, the words ’his mother is’ are given higher
scores. Obviously, the three words are important for expressing the ’parent-children’ relation.

CAT visualized example In Figure 4, we visualize the distance distributions between the given sen-
tence and its candidate relations. The four subfigures respectively show the distance distributions calcu-
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Figure 3: An example of the entity-guided gates of a given sentence.

lated by different models including our true relation identification and confusing relation identification.
Among the five candidate relations, R2 in green is the true relation of the sentence, and R1 in red is the
confusing relation that the sentence is usually misclassified into. Each edge in the subfigures represents
the distance from the sentence to the corresponding relation, and the solid edge indicates the nearest one.
Specifically, (a) is the distances calculated by a randomly initialized network. (b) is the classification
result of Proto, in this case, the query is misclassified into R1. (c) and (d) are the final classification
results of our CAT. The distance distribution between the query and the confusing relation calculated by
our CAT is shown in (d), and it can be seen that the model succeeds in making the query closer to the
confusing relation R2 as we expected. After that, the distance distribution information is propagated to
the true relation training by KL divergence, this operation is used to push the distance distribution of the
true relation prediction away from the distribution of the confusing relation. As (c) shows, the sentence
is pushed away from R1 and get closer to the true relation R2. This example validates our assumption
that explicit learning of confusing relations facilitates the identification of true relations.

Figure 4: Distances between a given sentence and five candidate relations calculated by different models.
where (a) is from a random initialized network, (b) is from the Proto network, (c) and (d) are respectively
from our true relation training and confusing relation training.

3.6 Relation Confusion Problem
In this section, we discuss the effectiveness of our model on confusion decoupling and use the confusion
matrices as our evaluation metric.

Confusing Relations Selection We first analyze the classification results of the baseline models Proto
and Proto-HATT. Based on our statistics, we find three of the 16 relations in the FewRel validation set
that are most easily confused with each other. Their relation indexes are P25, P26 and P40, and the corre-
sponding true relations are “Parents-Child”,“Husband-Wife” and “Uncle-Nephew”. We test our model
and the baseline models under the 5-way-5-shot configuration. For the three easily-confused relations,
we respectively record the number of their sentences which are correctly classified and misclassified into
the other two relations, and use the results to conduct the confusing matrices.

Improvement of Relation Confusion Problem As shown in Figure 5, we report the classification re-
sults of different models on the three confusing relations P25, P26 and P40. In the confusion matrices,
the horizontal axis represent the true relation of the sentences, and the vertical axis represent the classi-
fication results of these sentences by different models. For each matrix, supposing a given relation such
as P25 has X sentences to participate in the test, and the numbers of the sentences classified into P25,
P26 and P40 are respectively a,b and c, than the elements in the first row of the matrix are calculated
as (a, b, c/X). Given a relation, we expect the models classify more its sentences into the true relation,
and fewer its sentences into confusing relations. From this perspective, through comparing the confu-
sion matrices of “CTEG” and the baseline models, it can be seen that our full model CTEG achieves
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( % )  

Proto Proto-HATT MLMAN CTEG w/o CAT w/o EGA w/ Pos w/ Syn

P25 P26 P40 P25 P26 P40 P25 P26 P40 P25 P26 P40 P25 P26 P40 P25 P26 P40 P25 P26 P40 P25 P26 P40

P25 78 10 12 78 10 12 83 8 9 85 7 8 81 9 10 77 11 12 82 8 10 81 8 11

P26 12 75 13 12 75 13 17 71 12 9 82 9 11 80 9 13 73 14 10 78 12 11 77 12

P40 11 11 78 10 11 79 14 7 79 9 8 83 9 8 83 14 11 75 9 6 85 8 8 84

Proto Proto-HATT Ours  w/o CDT  w/o SSE w/ Posw/ Syn

w/o EGAw/o CAT

Figure 5: Confusion matrices of the three easily confused relations, where different colors represent the
classification results of different models.
the best performance in identifying these easily confused relations. “w/o EGA” has the weakest ability
to decouple the confusing relations, because it is not provided with any entity information to identify
the true relation. Based on results of “w/o EGA”, “w/ Pos” and “w/ Syn” we can see that both of the
relative position and the syntax position bring significant improvements. In addition, compared with our
full model, the performance of “w/o CAT” proves that the CAT help to decouple the confusing relations.

4 Related Work

Few-shot Relation Classification Relation classification (RC) aims to identify the semantic relation
between two entities in a sentence, which is the basis of many natural language processing task, such
as question answering (Yu et al., 2017) and knowledge graph completion (Shang et al., 2019). It has
attracted more and more attention over past few years (Jia et al., 2019; Feng et al., 2018; Vinyals et
al., 2018; Adel and Schütze, 2017; Yang et al., 2016a). Previous supervised approaches on this task
heavily rely on labeled data for training, that limits their ability to classify the relations with insufficient
instances. To address this problem, Han et al. (2018) first introduce few-shot learning to RC task, which
has been proved effective in the computer vision community and has many applications (Vinyals et al.,
2016; Sung et al., 2017; Santoro et al., 2016). Earlier works on few-shot RC are based on the widely used
model prototypical network (Snell et al., 2017; Ye and Ling, 2019). Recently, the pre-trained language
models (LM) has shown significant power in many natural language processing tasks. To this end, Gao
et al. (2019c) adopt the most representative pre-trained LM BERT (Devlin et al., 2018) to few-shot
RC, and their work shows that BERT brings significant improvements on classification performance.
Furthermore, the approach proposed by Soares et al. (2019) are also based on BERT and achieve the
state-of-art result on the few-shot RC task.

Syntactic Relation Previous RC models usually use the relative position information to identify which
words are the entities in a sentence, e.g., Zeng et al. (2015b). In addition, the syntax information of the
sentences is proved useful in many natural language processing tasks (Faleńska and Kuhn, 2019; Ma et
al., 2020; Chen et al., 2017a). Inspired by Yang et al. (2016b), which adopt the dependency parse tree for
RC (Ma et al., 2020), we also introduce the dependency relation as another type of position to emphasize
the specific entities, and propose a novel application of the syntax positions.

5 Conclusions

In this paper, we propose CTEG equipped with two novel mechanisms, namely the Entity-Guided At-
tention (EGA) and the Confusion-Aware Training (CAT), to address the relation confusion problem in
few-shot relation classification (RC). We conduct extensive experiments on benchmark dataset FewRel,
and experiment results shows that our model achieves significant improvements on few-shot RC. Abla-
tion studies verify the effectiveness of the proposed EGA and CAT mechanisms. Case study and further
analysis demonstrate that our model has the ability of decoupling easily-confused relations.
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