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Abstract

In this paper we focus on connective identification and sense classification for explicit discourse
relations in German, as two individual sub-tasks of the overarching Shallow Discourse Parsing
task. We successively augment a purely-empirical approach based on contextualised embeddings
with linguistic knowledge encoded in a connective lexicon. In this way, we improve over pub-
lished results for connective identification, achieving a final F1-score of 87.93; and we introduce,
to the best of our knowledge, first results for German sense classification, achieving an F1-score
of 87.13. Our approach demonstrates that a connective lexicon can be a valuable resource for
those languages that do not have a large PDTB-style-annotated coprus available.

1 Introduction

An important difference between a text and a random collection of sentences is the amount of coherence
it exhibits. In a text, sentences, or propositions therein, are connected through particular relations that can
be, for example, causal, temporal or contrastive. Such relations can be obvious from the semantics of the
involved text segments alone, as in (1), where the contrastive relation between male and female worker’s
earnings is easily inferred. Or they can be explicitly signaled by (discourse) connectives. Connectives are
usually understood to be a closed class of syntactically heterogeneous words and phrases, and are known
to be ambiguous in two different ways. In (2), there are no two particular propositions that are related to
each other by the potential connective once, thus it is said to have sentential reading, as opposed to its
discourse reading in (3) and (4). Furthermore, once is ambiguous with regard to the particular relations
it can express, and signals a temporal relation in (3) and a conditional relation in (4).1

(1) Earnings of year-round, full-time male workers fell 1.3% in 1988 after adjusting for higher prices.
Earnings of female workers were unchanged. (wsj 1815)

(2) Once again the company’s future looked less than rosy. (wsj 0564)

(3) Once it gets there, a company can do with it what it wishes. (wsj 0989)

(4) Normally, once the underlying investment is suspended from trading, the options on those invest-
ments also don’t trade. (wsj 1962)

Differentiating between sentential and discourse reading is often referred to as connective identifica-
tion, and classifying the particular sense of a connective, or the relation it is involved in, is often referred
to as sense classification. Both are sub-tasks of discourse parsing, which in turn has applications, for
example, in text summarisation (Schilder, 2002; Yoshida et al., 2014), machine translation (Meyer and
Popescu-Belis, 2012; Joty et al., 2014; Sim Smith, 2017) and argumentation mining (Eckle-Kohler et al.,
2015).

The availability of annotated data for the task of discourse parsing as a whole, and consequently its
sub-tasks, is limited. With the PDTB being by far the largest corpus annotated for discourse relations,

This work is licensed under a Creative Commons Attribution 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by/4.0/.

1All examples are taken from the PDTB (Prasad et al., 2008).
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containing ~53k annotated relations in its 3.0 version (Prasad et al., 2019), any language other than
English can be considered a low-resource language. However, in recent years, many connective lexicons,
listing all connectives of the respective language and some of their properties, have become available for
several languages.2

The main contribution of this paper is to investigate to what extent linguistic knowledge encoded in
such lexicons can augment a purely-empirical approach to connective disambiguation in a low-resource
scenario. Particularly, at first we fine-tune BERT (Devlin et al., 2019) to the task of both connective
identification and sense classification for German, and then attempt to improve over this approach by ex-
ploiting DiMLex (Scheffler and Stede, 2016), a German connective lexicon. Additionally, we experiment
with syntactically inspired features in the tradition of Pitler and Nenkova (2009). Our results demonstrate
that exploiting a connective lexicon can improve performance both within-domain and across-domain in
situations where limited training data is available.

The rest of this paper is structured as follows: Section 2 provides a more detailed definition of connec-
tives and discusses related work on connective identification and sense classification. Section 3 explains
the resources we use in our experiments. Section 4 outlines our method of combining BERT with infor-
mation from the connective lexicon, and also syntactically inspired features for connective disambigua-
tion. Section 5 presents and discusses the results, including the question of generalizing the approach to
other languages. Finally, Section 6 sums up the key findings and provides an outlook on future work.

2 Background & Related Work

2.1 Background

In the operationalisation of discourse relations in the PDTB framework, explicit relations are those sig-
naled by a connective, meaning that the definitions of explicit relations and connectives largely align. Not
all frameworks dealing with coherence relations distinguish implicit from explicit relations as clearly as
the PDTB. The notion is absent in Rhetorical Structure Theory (Mann and Thompson, 1988), for exam-
ple. And even in the PDTB, the boundary is slightly faded by the inclusion of AltLex (for alternative
lexicalisation) instances, indicating relations signaled by, in principle, open-class words and phrases,
such as the reason is that. More recently, in the PDTB3, AltLexC instances are added, where a particular
syntactic (as opposed to lexical) construction signals the discourse relation.

With regard to connectives, their long tradition of research (Schiffrin, 1987; Redeker, 1991; Knott and
Dale, 1994; Degand et al., 2013), has recently been discussed by Danlos et al. (2018), who, in addition,
differentiate between primary and secondary connectives, following Rysova and Rysova (2014).

In the DiMLex approach, the definition is based on Pasch et al. (2003), and then follows Stede (2002)
by including certain prepositions. We thus adopt the characterisation that a lexical item X is a connective
when:

• X is not inflectable,
• X expresses some specific, two-place semantic relation,
• the arguments of the relational meaning of X are propositional structures,
• the verbalisations of the arguments of the relational meaning of X can be clauses.

Note that this definition does not include any syntactic categorisation, and following this definition,
connectives are a heterogeneous group of adverbials, sub-ordinating and co-ordinating conjunctions and
prepositions. Furthermore, connectives can be single words or phrases (as long as), which in turn can
be discontinuous (either...or, if...then). Some connectives (like although and in spite of ) always have
discourse reading, rendering their identification–in principle–a case of mere pattern matching. Others,
however, may show a heavily skewed distribution, with a conjunction like and often having sentential
reading, and a phrase like on the other hand rarely having sentential reading. The same holds for senses,
where many connectives can signal only one particular relation sense, rendering their sense classification

2The connective lexicon platform connective-lex.info currently contains freely-available lexicons for Arabic,
Bangla, Czech, Dutch, English, French, German, Italian, Portugese and Ukrainian.
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redundant. Others may signal several different senses, with their particular sense distribution again being
heavily skewed (see Section 3.1 for examples).

State of the art results in end-to-end shallow discourse parsing (Wang and Lan, 2015; Oepen et al.,
2016) have been achieved using a pipeline architecture, introduced by Lin et al. (2014). In this pipeline,
connective identification is the first, and explicit relation sense classification the third component (after
argument extraction once a particular connective is located). Errors made here are propagated down
the pipeline. Improving performance for these two sub-tasks can thus have major impact on end-to-end
performance. The following subsection provides an overview of performance for these two tasks on
different corpora and languages.

2.2 Related Work

Because of the data situation, most work on (shallow) discourse parsing is done on English. The 3.0
version of the PDTB (Prasad et al., 2019) contains ~53k annotated relations, compared to just over 1k
explicit relations in the German corpus we use (see Section 3.1 for details). For most other languages
that have corpora annotated for discourse relations (see Zeldes et al. (2019) for an overview), the number
of available annotations is equally low, yet connective lexicons may exist for these languages (see Stede
et al. (2019) for an overview). Thus, our approach, applied to German, is potentially useful for other
languages for which the required lexicon exists.

Two consecutive shared tasks on end-to-end shallow discourse parsing (Xue et al., 2015; Xue et al.,
2016) have spiked interest in the overarching task, which includes connective identification and sense
classification. The two year’s winning systems (Wang and Lan, 2015; Oepen et al., 2016) report F1-
scores of 94.16 and 94.4, respectively, for connective identification. For German, our language of inter-
est, early work on connective identification is described in Dipper and Stede (2006), who use a subset
of nine connectives and report an F1-score of 93.95 for the functional disambiguation task on this sub-
set. In earlier work (Bourgonje and Stede, 2018), we include all connectives present in the Potsdam
Commentary Corpus and report an F1-score of 83.89, by extending the syntactically inspired features of
Pitler and Nenkova (2009). In addition, we discuss the effect of training data volumes for the connective
identification task for English by iteratively down-sampling training data size and reporting the results.
The work reported on in this paper improves upon Bourgonje and Stede (2018) by combining the syntac-
tically inspired approach with a contextualised vector-based approach for connective identification (for
German), and by introducing results for sense classification for German.

Regarding sense classification for explicit relations, Meyer and Popescu-Belis (2012) attempt to im-
prove Machine Translation performance by disambiguating connectives. They report an F1-score of 75
when classifying a subset of 13 temporal and contrastive connectives, using syntactic features, WordNet
relations and candidate translations. For state-of-the-art performance in explicit sense classification on
English, we turn to Wang and Lan (2015) and Oepen et al. (2016), who report scores of 90.79 and 90.01,
respectively.3 For German, earlier work (Kunz and Lapshinova-Koltunski, 2014) investigates connec-
tives (referred to as cohesive conjunction strategies) in both German and English in both written and
spoken language. The authors present statistics for sense distribution in their GECCo corpus, but do
not attempt to classify the annotated instances and to the best of our knowledge, no prior work on sense
classification for German exists.

The combination of low volumes of training data and neural network architectures for discourse pars-
ing has been discussed in (Rutherford et al., 2017) for English and Chinese, but in our case, volumes
are considerably lower still. The idea of augmenting neural approaches with external knowledge for
the purpose of implicit sense classification is explored by Rutherford and Xue (2014), who use Brown
cluster pairs and coreference patterns, and Kishimoto et al. (2018), who use ConceptNet in combination
with coreference resolution.

3These numbers are without error propagation.
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3 Data

3.1 Potsdam Commentary Corpus

To train and evaluate our approach, we use the Potsdam Commentary Corpus (PCC) in its 2.2 version
(Bourgonje and Stede, 2020). The PCC is a corpus of 176 news commentary articles, comprising ~33k
words and 1,120 explicit discourse relations. It is a multi-layer corpus, annotated for, among others,
coreference chains, information structure, RST trees, and sentential syntax. For the syntactic features
used in our experiments though, we use automatically produced parse trees instead of gold syntax trees.
We argue that this provides a more realistic impression of performance on new, incoming text, and it
allows us to directly compare results based on additional data (see subsection 3.2), for which we have
no gold syntax trees available. Thus, we only use the layer of discourse relations following the PDTB
definition. See Bourgonje and Stede (2020) for more details on this annotation layer.

The PCC contains 175 connective types. If we add the cases of sentential reading (i.e., cases like (2)
in Section 1), we have a total of 2,677 instances to train and evaluate our approach on; 1,120 connective
tokens and 1,557 non-connective tokens. Of the 175 connective types, 47 are singletons and only 66
occur more than 5 times, illustrating the rather long tail with low-frequent examples.

94 of the 175 connective types always have discourse reading in the PCC, meaning that for these cases
the task of connective identification in theory could be handled by simple pattern matching (but our
classifier has to learn them nonetheless, and so they are included in the train and test data). This group,
however, only comprises 337 instances (13% of all data). Among the other 87%, distribution is heavily
skewed. Connectives like Und4 (”and”), sondern (”but/rather”) and wenn (”if”) have a high connective
ratio, of 0.95, 0.93 and 0.97, respectively. On the other hand, connectives like als (”as”), Wie (”(such)
as”) and durch (”through/by”) very seldom have connective reading, with a ratio of 0.08, 0.05 and 0.06,
respectively. With regard to sense distributions, 75 connective types express one sense only in the PCC,
rendering their sense classification again a simple case of pattern matching. However, this set makes
up only 164 instances (6% of all data). The most ambiguous connective in the PCC is dann (”then”),
expressing up to 5 different senses. In terms of surface form, the majority of connectives in the PCC
are single words; there are 140 single word connective types (96% of all data), vs. 35 phrasal connective
types (4% of all data). Of these 35 phrasal types, 17 are discontinuous (2% of all data).

The connective identification task uses binary labels. The sense classification task, using the PDTB3
sense hierarchy as labels, means doing 24-way5 classification. See (Prasad et al., 2019) for more infor-
mation on the inventory of senses being used.

3.2 Wikipedia & News Data

In order to establish potential domain effects and generally improve coverage, we sampled data from two
additional corpora. The seed set we use for sourcing examples are connectives that do not appear at all in
the PCC (but are present in DiMLex) and connectives that have been shown as hard to disambiguate, i.e.,
those with an F1-score of less than 0.70 in the earlier connective identification experiments of Bourgonje
and Stede (2018). Starting from this seed set, we sampled texts from Wikipedia and news articles. For
Wikipedia, we used a dump from February 2018, while the news data originates from a German-English
parallel corpus6.

For all connectives in our seed set, we sampled up to 20 instances in total from both corpora; 10 from
the news texts and 10 from Wikipedia. Because the Wikipedia articles were considerably larger in vol-
ume, if no 10 instances of a particular connective could be found in the news texts, we selected more
from Wikipedia to arrive at 20 instances. For every connective candidate, we included the sentence it
appeared in, the five previous sentences and the two following sentences. This maximises likelihood of
capturing both arguments,7 while minimising the amount of text the annotator had to read. These seg-

4Note that we make a distinction between upper- and lower-case here.
5Not all of the 30 classes in the PDTB3 sense hierarchy are represented in the PCC.
6http://homepages.inf.ed.ac.uk/pkoehn/publications/de-news/
7In the PCC, <0.4% of external arguments are in a sentence more than 4 sentences prior to the connective’s sentence, while

none of the external arguments are in a sentence more than 1 sentence after the connective’s sentence.
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ments were then annotated according to whether or not the candidate has connective or non-connective
reading, and for the particular sense in case of the former.

The sampled texts were annotated by a single annotator using the same procedure as done by Stede
and Neumann (2014), and a subset was annotated by a second annotator to calculate agreement. In
64.6% of cases, both annotators agreed on the candidate’s function (being either a connective or not
a connective). Working with just the PCC, Stede and Neumann (2014) had reported an agreement of
74.5% for this annotation task. As these (and various other) authors pointed out, in German, the problem
of connective ambiguity is more severe than in many other languages due to German having a rich
inventory of discourse particles, many of which also have a connective reading; and in many contexts the
distinction is hard to pin down.

This small annotation campaign lead to an additional 3,124 instances (940 connectives, 2,184 non-
connectives). Due to targeted sampling, the number of connective types (210) is higher than in the PCC.
Of these, 78 always have discourse reading, making up 9% of all data. The number of connectives that
are semantically unambiguous is larger than in the PCC, with 180 connective types (18% of all data)
only ever expressing one particular sense.

3.3 DiMLex

At the core of our approach to improving performance for the two classification tasks by means of
linguistic knowledge is the connective lexicon. Attempts to construct such a lexicon, exhaustively listing
all connectives of a language in a both human- and machine-readable way (i.e., in an XML format),
started with DiMLex (Stede, 2002), a lexicon for German connectives. In the last two decades, eight
other languages followed, and the multi-lingual platform8 hosting these lexicons is described by Stede et
al. (2019). DiMLex itself as been further developed, and considerable improvements have been made by
Scheffler and Stede (2016), in which the authors use four different strategies of expanding and completing
the lexicon. Since only using the annotated senses from an annotated corpus, such as the PCC, would
result in a circular procedure, the three other strategies consist of exploiting lexicons from different
languages, consulting traditional linguistic or lexicographic literature, and sampling additional data to
explore potential new senses for known connectives (see Scheffler and Stede (2016) for more details).
Furthermore, validating and developing DiMLex by exploiting lexicons from different languages has
been explored; in combination with a parallel corpus by Bourgonje et al. (2017); in combination with
machine translation by Sluyter-Gäthje et al. (2020).

DiMLex contains 274 entries, of which 41 are indicated to always have discourse reading and 153
are semantically unambiguous (i.e., always express one particular sense). Each entry contains several
attributes carrying additional information. In addition to the root form of the entry, orthographical
variants are included, varying from casing difference (i.e., Deswegen vs. deswegen) to alternative
spelling (i.e., überhaupt vs. ueberhaupt) and style differences (i.e., sowohl...als auch vs. sowohl...wie
auch). Additionally, each entry carries its syntactic type, a specification of whether or not it can have
sentential reading, corpus examples, and possible senses it can express. For more information we refer
to the publicly available lexicon and its documentation9. Again, for the purposes of the present paper it
is important to note that the the PCC annotations and the DiMLex entries have originally been created
independently of each other.

The resources used in this paper are summarised in Tables 1 and 2, illustrating the key characteristics
of the data sets (Table 1) and the connective lexicon (Table 2). The next section explains how DiMLex
is exploited to improve performance for our two disambiguation tasks on these two data sets.

8http://connective-lex.info/
9https://github.com/discourse-lab/dimlex
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PCC WN
number of words 33,222 75,587
connective tokens 1,120 940
non-connective tokens 1,557 2,184
connective types 175 210

Table 1: Key characteristics of the Potsdam Com-
mentary Corpus (PCC) and Wikipedia & News Data
(WN).

DiMLex
Entries 274
Potentially non-connective 233
Multiple senses 121

Table 2: Key characteristics of DiMLex.

4 Method

4.1 Connective Identification

BERT Baseline Our baseline system uses all connective types in the PCC as candidate items to be
classified. Whenever a candidate is encountered in the text, we extract the entire sentence the candidate
connective appears in. If the candidate is sentence-initial, we take its previous sentence as well, to
provide more (preceding) context. For this textual input, we retrieve the BERT embedding. This is
then concatenated with the candidate’s single-word embedding. The reason for including the isolated
embedding separately is to differentiate between candidates appearing in the same sentence. Consider
the example sentence ”But traders took profits and focused on crude oil inventories once that factor was
eliminated.” (wsj 1932), where and is annotated as having sentential reading and once is annotated as
having discourse reading. Including the candidate separately prevents feeding the classifier two identical
samples with different labels. Since we use the base version of a German BERT model,10 this returns
a 2304-dimensional vector.11 This is then fed as input to a MultiLayer Perceptron classifier, following
earlier work on similar problems (Ostendorff et al., 2019; Bai and Zhao, 2018; Pacheco et al., 2016).

BERT + DiMLex (surface form only) This system is essentially the same as the baseline system,
but instead of using all connectives in the PCC as candidates, we now use all entries (plus their
orthographical variants) of DiMLex as candidates. With the connectives in DiMLex being a superset of
those in the PCC, in the PCC setup, this effectively only adds negative examples to the data; particular
candidates occurring in the PCC, but never with discourse reading are now considered too. This adds
638 items to our data set. The main motivation for using all DiMLex entries as the candidate list is
so that for other corpora, connective candidates not appearing in the PCC will also be considered for
connective identification.

BERT + DiMLex ambiguity info Since information on whether or not a particular connective can
have sentential reading is available in DiMLex (recall that 41 connectives in DiMLex always have
discourse reading, see Section 3.3), we exploit this information by simply overruling the classifier
prediction, as a post-processing step, in case it predicts a sentential reading when this does not
correspond to its relevant DiMLex attribute. In addition, this setup assigns discourse reading for the
relevant candidates from DiMLex, also if the candidate did not appear in the training data.

BERT + DiMLex + Syntactic features In an attempt to further improve upon this, we combine the
previous setup (i.e., BERT + DiMLex ambig.) with a set of manually crafted features. We use the
feature set from Bourgonje and Stede (2018), which in turn is based on the syntactic features from Pitler
and Nenkova (2009) that are widely used in connective identification, extended by Lin et al. (2014). This
feature set includes surface level and part-of-speech bigrams, the categories of the connective’s parent
node and that of its left and right siblings, whether or not the right sibling contains a VP, and the path to
the root node. The values for these features are based on constituency trees obtained from the German

10https://deepset.ai/german-bert
11The first 786 positions are set to a default if the candidate is not sentence-initial.
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Stanford LexParser (Rafferty and Manning, 2008). Since both the BERT and the syntactic feature sets
contain information of a different kind, and crucially have different dimensions, we combine predictions
from the MultiLayer Perceptron classifier and a RandomForest classifier (following Bourgonje and
Stede (2018), who use this for connective identification) for the additional features, and average their
predictions, assigning the same weight to both classifier predictions.

For the PCC, all numbers are the result of 10-fold cross-validation. Because we want to establish
domain influence, for the Wikipedia & News setup (WN), training is done on the PCC, testing on the
WN and results are averaged over 10 executions. We use weighted averaging for (individual) precision,
recall and F1-scores.

4.2 Sense Classification
Sense classification has two up-stream tasks in an end-to-end discourse parsing pipeline (i.e., connective
identification and argument extraction). In this study however, we use the gold connectives directly
from our annotations, and do not rely on the output of our connective identification component. We also
use the gold argument spans from the annotations, and instead of using the connective’s sentence and,
potentially, its previous sentence, for the sense classification task we use both argument spans (Arg1
and Arg2, which are fed to BERT in order of appearance). Another major difference is the number
of labels; instead of binary classification, sense classification with the PCC as training data means a
24-way classification problem. Other than that, the procedure is mostly comparable to the connective
identification setup.

BERT Baseline The baseline uses all connectives in the corpus, retrieves the 2304-dimensional vector
for both argument spans from BERT and uses this as input to the MultiLayer Perceptron classifier. Since
we use gold connectives in this step, using a different candidate list (i.e., BERT + DiMLex (surface
form only)) has no effect here, which is why the corresponding cells in Table 3 are empty.

BERT + DiMLex senses Instead of using the attribute in DiMLex stating whether or not a connective
can have sentential reading, we extract the list of possible senses and if a sense not in this list is assigned,
we overrule the classifier prediction with its most likely sense (i.e., most frequent in the training data).

BERT + DiMLex + Syntactic features Similar to the connective identification setup, we combine the
BERT + DiMLex senses setup with the same set of features as for connective identification. Moreover,
because these features pertain to the connective (and not to the the sentence it appears in, or its argu-
ments), the feature values are identical to the connective identification scenario (though here, the labels
are not binary, but one of 24 possibilities).

5 Results & Discussion

5.1 Results: Connective Identification
In (Bourgonje and Stede, 2018), a majority vote baseline of 79.60 is reported on the PCC, and a final
classification result of 83.8912. Our baseline, which exploits BERT representations for the potential
connective’s current and, if applicable, previous sentence, improves over this majority vote baseline by
almost 2 points, but is outperformed by the classifier described in (Bourgonje and Stede, 2018) by over 2
points in F1-score. Adding all entries from DiMLex to our candidate list improves F1-score by about 4.5
points for the PCC. For the WN setup, we equally see a jump in performance; an increase in F1-score of
about 5 points (from 62.37 to 67.55). As stated in Section 4, this procedure adds only negative samples
in the PCC setup (i.e., candidates with sentential reading), but the classifier performs better on this larger
data set. In the WN setup, it adds only few positive cases (only 27 samples), but we see a comparable
increase in performance.

12Note that these results are obtained using an earlier version of the corpus though, and minor modifications to relevant
annotations have been made, as reported on in (Bourgonje and Stede, 2020).
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Connective Identification Sense Classification
PCC WN PCC WN

BERT Baseline Precision 81.78 75.56 82.13 42.52
Recall 81.62 62.25 83.19 35.70
F1-score 81.53 62.81 81.32 33.73

BERT + DiMLex (surface form only) Precision 86.24 81.63 — —
Recall 86.11 62.33 — —
F1-score 86.14 67.55 — —

BERT + DiMLex Precision 86.64 81.60 88.52 61.00
Recall 86.40 62.80 88.13 49.85
F1-score 86.33 67.96 87.13 49.55

BERT + DiMLex + Syntactic features Precision 88.06 81.87 87.52 60.43
Recall 88.00 66.73 87.28 49.53
F1-score 87.93 71.12 86.34 49.44

Table 3: Results for connective identification and sense classification.

Including additional information from DiMLex (i.e., whether or not particular connectives can have
sentential reading) further improves performance, but the difference is small. Despite there being 41
connectives that always have discourse reading listed in DiMLex (see Section 4), in the PCC setup it
occurs only 11 times that an incorrect prediction (i.e., sentential reading prediction for one of those 41
entries) is overruled and set to discourse reading during post-processing. This happens 29 times (average
over 10 runs) in the WN setup, leading to a minor F1-score improvement of 0.19 (which is not statistically
significant (p>0.02)) and 0.41, in the PCC and WN setup, respectively.

Finally, adding in manually engineered and syntactically inspired features further improves perfor-
mance for the PCC by about 1.5 points to a final F1-score of 87.93 for connective identification in the
PCC. In the WN setup, we obtain a final F1-score of 71.12. This demonstrates that for connective iden-
tification, with the low number of training instances we have available for German, large-scale13 neural
approaches can be augmented with external knowledge encoded into lexicons and manually crafted and
syntactically inspired features to improve performance.

5.2 Results: Sense Classification

Performance on sense classification in the PCC is very similar to performance for connective identifica-
tion, despite the larger number of labels. For the WN setup, we see an even larger drop in performance,
due to domain effects, i.e., a baseline of 42.52 for sense classification compared to 75.56 for connec-
tive identification. Using the sense information from DiMLex and, as a post-processing step, correcting
all assigned labels that do not match with possible labels for the corresponding connective in DiMLex,
results in a ~6 point increase in the PCC setup, and a considerably larger increase of ~16 points in the
WN setup. Exploiting sense information from DiMLex thus seems to be a particularly effective way to
counter-act domain effects. Adding syntactic features does not improve performance for sense classi-
fication, though the difference between the setup with and without syntactic features is not statistically
significant (p>0.02) in either of the setups.

Since in the pipeline architecture mentioned in Section 2, i.e., Lin et al. (2014), sense classification
has two upstream tasks (connective identification and argument extraction), we implemented the com-
ponents described in this paper in an end-to-end German shallow discourse parser that is currently under
development. The numbers included in Table 3 for sense classification rely on gold annotations for con-
nectives and arguments. When using predicted connectives and argument spans from the parser that
is being developed, we report an F1-score of 60.41 (compared to 87.13 when using gold connectives
and argument spans) for the PCC, and 32.55 (compared to 49.55) for the WN data, demonstrating the

13Despite the fact that BERT is pre-trained on huge amounts of data, and meant to be fine-tuned to a particular task using
significantly less data, we argue that the amounts we have available are still very low.
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severity of error propagation from upstream tasks. This underscores the importance of high performance
especially for tasks early in the pipeline, and small improvements for connective identification can have
major (positive) downstream impact.

5.3 Discussion: Lexicon Generation

The experiments reported in this paper rely on the existence of an external knowledge base in the form
of a lexicon that (ideally) exhaustively lists the connectives of a particular language, augmented with ad-
ditional information on ambiguity and potential senses. As pointed out earlier, such lexicons are already
available for ten languages in a web-based database. For a language that does not have a connective
lexicon, its creation is a relatively labour-intense task, but it can be sped up in various ways.

Provided that a corpus with the required annotations is available, a lexicon can be at least semi-
automatically extracted from the annotations. This approach was taken by Das et al. (2018), who ex-
tracted an English lexicon from the PDTB and the RST Signaling Corpus (Das and Taboada, 2018).

If the required annotations are not available, or not on a scale supporting the extraction of a list any-
where near exhaustive, parallel corpora or machine translation, in combination with annotation projection
can speed up development. An approach based on a parallel corpus is explored in Bourgonje et al. (2017).
The combination of machine translation and annotation projection is described in Sluyter-Gäthje et al.
(2020), who foremost aim to create German annotations, but populating (or extending) a lexicon can
be a by-product of this approach. In addition to these data-oriented approaches, the intuition of native
speakers who are familiar with discourse research can help in further completing such a lexicon. Such a
combined, i.e., data-oriented and intuition-based, approach was described in (Bourgonje et al., 2018).

Furthermore, we note that the syntactic features in our best-performing setup for connective identifica-
tion are relatively straightforwardly adapted to a different language if a constituency parser for the target
language is available, and we refer to Bourgonje et al. (2018) for more information on this.

6 Conclusion & Future Work

We reported our experiments on two sub-tasks of discourse parsing: connective identification and sense
classification (for explicit relations). Working on German, which in this respect can be considered a
low-resource language, we use a state-of-the-art language modeling tool (BERT) that has proven to be
successful in a variety of tasks for which typically considerably more training data is available. We
demonstrate the effectiveness of augmenting this robust approach with linguistic knowledge as encoded
in a connective lexicon, and with manually crafted and syntactically inspired features. In the best-scoring
setup, we obtain an F1-score of 87.93 for connective identification, and 87.13 for sense classification for
explicit relations. This improves over previously published results for German connective identification
and sets a first benchmark for German sense classification (for which, to the best of our knowledge, no
published results are available).

Furthermore, we move beyond the German corpus that is regularly used in this kind of work (PCC)
and evaluate our approach also on annotated data samples from Wikipedia and news texts and report a
significant increase in performance. Due to the relatively low agreement scores on this annotated data
though, we consider improving the quality of the annotations an important piece of future work.

Our experiments are done in the context of developing an end-to-end system for German discourse
parsing. The vast majority of such end-to-end systems use a pipeline architecture, in which connective
identification is the first, and (explicit relation) sense classification the third component. This paper
presents sense classification results using gold connectives only, and we consider it an important piece of
future work to put the individual components together to get an idea of performance in a pipeline setup,
with error propagation.

Finally, we note that many discourse relations in a text are not signaled explicitly (at least not by
connectives); in the PDTB2, explicit relations make up ~45% of all annotated relations. The processing
of non-explicit relations is not covered in this paper, and is equally an important piece of future work.
The recent literature using the English PDTB corpus has usually tackled this with neural approaches, but
for low-resource languages, other solutions will probably have to be found.
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