Data Augmentation via Subtree Swapping
for Dependency Parsing of Low-Resource Languages

Mathieu Dehouck Carlos Gomez-Rodriguez
Universidade da Coruna, CITIC
FASTPARSE Lab, LyS Research Group,
Departamento de Ciencias de la Computacion y Tecnologias de la Informacion
Campus Elvifa, s/n, 15071 A Coruia, Spain
{mathieu.dehouck,carlos.gomez } @udc.es

Abstract

The lack of annotated data is a big issue for building reliable NLP systems for most of the world’s
languages. But this problem can be alleviated by automatic data generation. In this paper, we
present a new data augmentation method for artificially creating new dependency-annotated sen-
tences. The main idea is to swap subtrees between annotated sentences while enforcing strong
constraints on those trees to ensure maximal grammaticality of the new sentences. We also pro-
pose a method to perform low-resource experiments using resource-rich languages by mimicking
low-resource languages by sampling sentences under a low-resource distribution. In a series of
experiments, we show that our newly proposed data augmentation method outperforms previous
proposals using the same basic inputs.

1 Introduction

Data sparsity has been a problem since the beginning of natural language processing. Neural networks
have not solved it and have made it even more visible with their hunger for data. Hence a revived interest
in data augmentation, since artificially created annotation can prove very useful to tackle the lack of
manually annotated training data.

Many approaches have been proposed to perform data augmentation. Some rely on external resources,
such as unannotated raw text in order to iteratively increase their training data with automatically anno-
tated examples (McClosky et al., 2006; Yu and Bohnet, 2015). However, this is an error-prone method and
useful annotations must be separated from harmful ones. Other proposals instead rely solely on available
annotated data in order to generate new examples (Sahin and Steedman, 2018).

In this paper, we present a language-agnostic approach to the automatic generation of dependency-
annotated sentences. Our method essentially swaps compatible subtrees from different sentences in order
to generate new annotated sentences. By enforcing a number of constraints on the subtrees to be swapped,
we avoid to generate too ungrammatical sentences. Furthermore, contrary to previous work that kept the
syntactic structure of sentences or impoverished it, our method injects structures from other sentences,
so it can introduce more syntactic complexity in the generated sentences.

In order to assess the potential of our new data augmentation method for low-resource languages in a
way that is independent from the specific sentences in low-resource treebanks, we propose a method to
mimic low-resource language data using high-resource language data. By sampling sentences from high-
resource languages using a low-resource language distribution (over sentence length), we can perform the
same experiment several times in a more faithful low-resource setting, while dampening the role played
by each individual sentence on the final results, which can be prominent in very low-resource settings.

While there are many methods to parsing low-resource languages, such as unsupervised parsing or
cross-lingual transfer, in this paper we consider a very restrained setting where one has only access to
mono-lingual parsing data and nothing more. This very strict setting addresses two research problems.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

3818

Proceedings of the 28th International Conference on Computational Linguistics, pages 3818-3830
Barcelona, Spain (Online), December 8-13, 2020

How to analyse a language that at the same time is an isolate and uses its own writing system (e.g.
Japanese, Korean) at least in the data if we do not have typological information? And, how much can
we learn from a very limited amount of training data?

2 Related Work

Automatically generated annotation has been used for dependency parsing for at least two decades. Mc-
Closky et al. (2006) used a combination of a k-best parser and a discriminative reranker in order to increase
their training set size with automatically parsed sentences. Later McDonald et al. (2011) and Wréblewska
and Przepiérkowski (2012) proposed various projection techniques to create annotated data for languages
that did not have any, relying to different extents on parallel corpora.

Sentence morphing itself is not new either. Wang and Eisner (2018) and Rasooli and Collins (2019)
proposed to reorder sentences from a source language in order to better match the word order of a target
language. Aufrant et al. (2016) proposed not only to reorder words but also to delete some such as
determiners when they are irrelevant for the target language.

However, these methods rely on external resources (parse trees in other languages and/or unparsed
sentences from the same language) to create new data. And creating new examples this way introduces
noise in the training data. In order to avoid this kind of problems, one can directly try to expand the little
annotated data available.

Sahin and Steedman (2018) proposed to transform gold dependency trees directly by rotating their
core arguments and deleting subtrees in order to generate new sentences for training POS taggers for
low-resource languages. While similar in idea to their work, justifying experimental comparison, our
work is different in two important aspects. First, their data generation methods and ours differ both in
the grammaticality constraints and in the shape of the generated sentences. In addition, while the data
generation process morphs dependency trees, they evaluated it on POS tagging. It was thus unclear how
their data augmentation method would behave on dependency parsing, where the data generation process
and the success measure both look at the same structure.

Later Vania et al. (2019) evaluated the data augmentation technique of Sahin and Steedman (2018)
directly on dependency parsing as part of a wider investigation on methods for parsing low-resourced
languages. Their results showed that creating sentences by morphing trees indeed helps parsers. They
also considered replacing words by words with agreeing morphology to create new “nonce” sentences
after Gulordava et al. (2018) and looked at cross-lingual training, which is also beneficial.

In this paper, we depart from their work by focusing on gold data morphing only. We propose a new
data augmentation method that creates new “gold” parses from existing ones by swapping compatible
subtrees. We also propose an experimental method for mimicking a low-resource setting using high
resource languages.

3 Data Augmentation

In this section we present a language-agnostic method to automatically generate high-quality dependency
annotated data from a small amount of (manually) annotated sentences. Beside being as language-
agnostic as possible, our method should (1) create new structures and (2) create grammatically sound
sentences.

While the cropping operation of Sahin and Steedman (2018) creates new sentences, it has two main
issues. The first one is that sentences created this way may be ill-formed. For example, French finite
verbs always need an overt subject, and removing it creates ungrammatical sentences. The second one is
that it creates new sentences by impoverishing existing ones. Cropped trees are by essence smaller and
simpler than their source trees. This may be a problem since small treebanks already have less material
and simpler structures than bigger ones.

To avoid these issues, we propose to create new sentences by swapping subtrees between sentences
under constraints we describe below. Swapping subtrees between sentences creates both simpler and more
complex sentences, and strong constraints ensure that these sentences are as grammatical as possible.

3819

NN iy

a) You have a cat . b) Sam bought a new house
r\l A r\l TN

¢) You have a new house . d) Sam bought a cat

Figure 1: Illustration of tree swapping operation between sentences. Sentences ¢ and d result from swap-
ping the direct objects (represented with an incoming dashed arrow) from sentences a and b. Sentence ¢
is more complex than a since its new direct object has an adjective.

Figure 1 shows an example of tree swapping that creates both a more complex and a simpler sentence.
In sentence c, the new direct object has an adjective modifying the noun, while in a, the noun had just
a determiner. Swapping subtrees can introduce other new complexities in otherwise simple sentences,
such as relative clauses. Sentences d and b show the inverse phenomenon.

3.1 Grammatical Constraints

In the following, we assume Universal Dependencies annotations (UD) (Zeman et al., 2019), which we
also use for the experiments, but the idea behind our data augmentation technique can be applied to other
types of tree annotations given the relevant information is easily accessible to the head of a subtree.

To be as language-agnostic as possible while trying to keep maximal grammaticality, we enforce the
root of the subtrees being swapped to have the same POS tag, morphological features and dependency
relation. Of course, enforcing those three constraints at the same time is far too rigid for most languages,
but we think it is a good compromise to provide a reasonable solution for every language, since knowing
which constraint can be relaxed is highly language specific.

For example, as English or French do not mark case on their noun phrases, a subject noun phrase
could be replaced by an object one as long as they agree in number (and sometimes in gender). However
in Japanese, case is marked with clitics which in UD attach to their modifying nouns but the nouns
themselves do not have any case marking. Therefore, swapping noun phrases whose roots agree in POS tag
and morphological features, but not in dependency relation would often lead to ungrammatical sentences.
Relaxing the morphological feature constraint would cause similar troubles in languages like Hebrew or
Ambharic in which verbs inflect for the gender and number of the subject. Finally, relaxing the POS tag
constraint could cause troubles in Turkic languages where nominal direct objects can appear both in the
nominative and accusative case while pronominal direct objects can only appear in the accusative.

3.2 Structural Constraints

In this paper, we only consider a subset of the available POS tags and dependency relations in order to
guarantee the quality of the generated sentences. Regarding POS tags, we only consider NOUN, PROPN,
ADJ and VERB. We avoid the other parts-of-speech because they could lead to more ungrammaticality. For
example, replacing a form of the auxiliary (AUX) to be in a continuous construction with the corresponding
form of to have would result in an ungrammatical sentence (I am eating. > *I have eating.). Similarly,
adverbs have such a wide range of uses that replacing any adverb by any other would likely yield incorrect
sentences.

Regarding relations, we consider all core arguments (nominal and clausal), all non core dependents but
discourse, expl and dislocated, and all nominal dependents. We ignore all the remaining relations,
including conjunctions, multi-word expressions and so on, as defined in Universal Dependencies. This is
detailed in the Appendix.

In order to make tree swapping easier, we also only consider projective subtrees and only allow one
swap at a time. While we could generate more sentences by allowing multiple swaps, one swap already
leads to a great amount of generated sentences so we only consider this case in this paper. Eventually, we

3820

do not swap trees between a sentence and itself, to avoid intra-sentence redundancy. And we never swap
main clause predicates (this is taken care for by avoiding the root relation) because it would not create
new sentences, but rather duplicate them.

4 Low-resource Experiments with High-Resource Languages

To be able to perform extensive experiments, we chose to work with resource-rich languages and use them
to mimic low-resource conditions. The most basic way to do so is to sample a small number of sentences
from a big treebank to artificially create a small one. This has the big advantage that we can sample many
different small treebanks and therefore dampen the influence of any given training sentence on parsing
results. This is especially important in a very low-resource setting where each sentence can have a strong
impact on the actual parsing results, while not being very representative of its actual source language.

However, the difference between high-resource treebanks and low-resource treebanks goes beyond the
mere number of sentences or words. Bigger treebanks tend to have more varied constructions than their
smaller counterparts'. This means that for a set number of sentences or tokens, a sample from a resource-
rich treebank may contain more information than a sample from a resource-poor one. Therefore, if we
want to mimic low-resource languages with high-resource ones, we have to take sentence complexity into
consideration.

In this paper we use sentence length as a surrogate for sentence complexity, under the assumption
that more complex constructions require more words?. Other complexity markers could be taken into
account such as dependency relation distribution. But annotators do not choose sentences according to
their internal structures or complexity, thus the relation distribution of a small treebank is as contingent
as the presence of any given sentence in it. So we keep this open for future work.

4.1 Low-Resource Sampling

In order to mimic low-resource languages with high-resource ones, we sample data from high-resource
languages using the macro averaged probability distribution of sentence length for languages that have less
than 1000 training sentences overall. We truncate the distribution to sentences shorter than 100 tokens.
Figure 2 represents the sentence length distribution of four sets of languages from UD 2.4. The dashed
red line represents training sentences of languages with more than 1000 training sentences (over all the
training sets when there are multiple treebanks). The dash dotted teal line represents training sentences of
languages with less than 1000 training sentences (low-resource languages). In plain blue is a smoothed?
version of the same distribution used to sample our training sets. In dotted orange is the distribution of
test sentence length for languages that do not have a training set at all. While having a higher mode, the
faster decay of the low-resource distribution gives it a lower mean than the resource-rich one. The test
distribution of under-resourced languages (without a training set), is skewed toward short sentences, with
both a low mean and a fast decay.

Language En Eu Fi He Id Ru Ta* Tr Vi Wo | Rich Low No Train
Treebank | EWT BDT FIB HTB GSD Synt TTB IMST VTB WTB ‘

Train 163 135 85 263 21.8 17.8 158 103 145 19.8 | 18.0 17.0 -
Dev 126 134 84 236 226 180 158 102 144 229 | 186 18.6 -
Test 121 136 87 250 212 181 16.6 102 149 221 | 17.7 16.7 12.7

Table 1: Average sentence length of Train, Dev and Test sets of resource rich languages (Rich), low re-
source languages with less than 1000 training sentences (Low,*) and languages without training sentences
(No Train).

'We believe that there are two main reasons behind this. One is the fact that shorter sentences are generally easier and
faster to annotate. The other is genre distribution. Different genres have different informational needs and thus average sentence
length. In UD 2.4, Tagalog and Warlpiri only have short grammatical examples.

This is mostly true given a language. However, in a multilingual setting, typology plays an important role too, and a simple
sentence in a more analytic language might require many more words than a more complex one in a more synthetic language.
But as we use many different languages, we decide to use a one-size-fit-all solution to keep our analysis simpler.

3The distribution is smoothed using a discrete quadratic kernel and a window size of 5 as presented in (Rajagopalan and
Lall, 1995).

3821

. 10 s ﬁll h
-------------- ic
.09 . Low
08 —— Smoothed
’ No Train

% of sentences

50 60

Sentence length in token

Figure 2: Macro average distribution of training sentence length for all languages, resource rich lan-
guages (more than 1000 training sentences), low-resource languages (less than 1000 training sentences),
its smoothed version used for sampling sentences and test sentences of languages without a training set
in UD 2.4.

Table 1 reports the average sentence length for the treebanks used in the experiments as well as for all
resource-rich languages from UD 2.4 (more than 1000 training sentences), less-resourced languages (less
than 1000 training sentences) and languages without training sentences. We see that average sentence
length covers a range of values with short sentences in Finnish and 3 times longer in Hebrew. We also see
that sentence length does not correlate with morphological complexity as on average Basque sentences
are only one word shorter than Vietnamese ones, while Basque is morphologically much richer than
Vietnamese. But from the three last lines, we see that as the quantity of resources decreases, so does the
average sentence length. This is especially true for languages with no training data, where test sentences
are 5 words (28.5%) shorter than those of resource-rich languages. This also means that test sets of better
resourced languages must be more complex and more representative of their actual language. Thus,
testing models trained with sub-sampled high-resource languages on their full test sets, should give a
faithful lower bound of the scores achievable for really low-resource languages.

S Experiments

In order to assess the potential of tree swapping as a data augmentation method for low-resource lan-
guages, we ran a series of experiments on 10 languages from UD 2.4, representing various families and
various syntactical and morphological typologies. For each language, we sampled 8 times 40 sentences
with the smoothed distribution of low-resource language sentence lengths depicted in Figure 2. While
40 training sentences might seem very low, in UD 2.4, Buryat has 19 training sentences, Kurmanji 20,
Upper Sorbian 23 and Kazakh 31.

5.1 Quantity and Quality of Generated Sentences

We first start by looking at the number of new sentences generated by our method and compare it with
the number of sentences generated by sentence cropping and rotation. We then look at the quality of the
sentences generated by our method.

5.1.1 Number of Generated Sentences

While the constraints presented in Section 3 are very strict to prevent most non grammaticalities while
staying language-agnostic, they still lead to a good number of new sentences. By definition, Sahin and
Steedman (2018)’s crop and rotate produce linearly many new sentences with respect to the number of

3822

Language En Eu Fi He 1d Ru Ta Tr Vi Wo Avg

Treebank EWT BDT FIB HTB GSD Synt TTB IMST VTB WTB X
Crop 46.4 57.3 339 579 57.6 59.0 65.4 50.6 529 56.5 53.7 1.3
Rotate 67.4 81.5 62.4 83.3 82.4 83.3 94.1 73.4 82.3 83.4 79.3 2.0
Swap 1604.8 990.6 611.5 870.6 1620.8 674.6 4794.0 17534 4563.6 25443 | 2002.8 50.0

Table 2: Average number of new sentences created by cropping, rotating and swapping dependency trees.
For each language we sample 8 sets of 40 sentences, each following the same sentence length distribution,
and use them as source to generate new sentences.

original sentences, but one swap creates quadratically many new sentences. If applied several times, tree
swapping could generate arbitrarily many and arbitrarily big sentences, on the order of O(n*+1), where
n is the number of original sentences and k the number of swaps. Table 2 reports the average number of
sentences generated by Sahin and Steedman’s crop and rotate operations and by our own tree swapping
operation on datasets containing 40 sentences each.

As expected, we see that the number of new sentences generated by tree swapping is much higher than
the number generated by crop and rotate. We also see that there is a correlation between morphologi-
cal richness and the number of generated sentences. Morphologically rich languages (Basque, Finnish,
Hebrew and Russian) have a rather low number of new sentences, less than one per pair (n? = 1600),
meaning that not all sentence pairs have compatible subtrees because of the rigid constraints. On the other
hand, morphologically simpler languages (such as Vietnamese) generate more sentences, almost 3 new
sentences per pair, as there are less morphological constraints on subtrees.

Tamil is an outlier here, as it has the highest number of generated sentences despite being morpho-
logically rich. Upon closer investigation, it turns out that UD Tamil data is relatively less complex than
that of other morphologically rich languages. For example, in Russian sentence sets, there are 78 (POS,
morphological features, dependency relation) triplets (with NOUN as POS) for 177 nouns (2.27 nouns per
triplet), while in Tamil there are only 38 such triplets for 187 nouns (4.92 nouns per triplet). And Tamil
data are much more skewed than those of other morphologically rich languages in terms of morphological
feature distributions. The most frequent triplet where the POS is noun appears less than 6% of the time
in Russian, but more than 23% of the time in Tamil.

5.1.2 Grammaticality of Generated Sentences

As we mentioned earlier, the strong constraints imposed on the trees to be swapped try to ensure that
most generated sentences are grammatical. However, as it is hard to guarantee that every new sentence is
actually valid, we looked at English and French sentences generated by the swap mechanism.

On aset of 100 sentences generated from the French Sequoia treebank, 14 could be considered problem-
atic. Nine had an nmod noun phrase replaced by another one either lacking a determiner or inserting one
in a context that does not allow it. Out of these nine sentences, three were actually due to dates in which
the months were replaced by another noun phrase. Similarly, one sentence had a subordinated clause
whose infinitive verb was missing an adposition. Three sentences were odd but not strictly ungrammat-
ical due to adjectives that usually occur after their noun being placed before. Eventually, a sentence was
containing a quote, and while the modification sounded odd inside a quote, outside it could be considered
ungrammatical.

Out of 100 sentences generated from the English EWT treebank, 4 sentences were problematic. Two
had problems with determiners after an adjective swap. In one case, the new adjective was starting with
a consonant while the previous one started in a vowel, rendering the previous “an” irregular. In the other
case, an adjective in a bare noun phrase was replaced by “same” which thus lacked a definite article. The
other two were involving nested clauses. In one, a relative clause in which the governing noun filled the
object role, was replaced by a relative clause with all its core arguments filled. In the other, a simple direct
object was swapped with a direct object with a relative clause which in context was very odd.

Further exploration of the sentences generated for the experiments, revealed that adpositions are also a
source of error, for example when swapping bare infinitives with fo-infinitives. As this was already seen
in French, we assume the same to be true for other languages. Examples of generated sentences are given

3823

* He says , I have to have an Corporate ADDRESS .

* The forest phlox is blooming to Australia instead of mid-May .

Please send me an excel spreadsheet which depicts the Shrimp Scampi Dinner .
Do n’t go, or you will learn how to waste any form of modern medicine .

Table 3: Examples of generated sentences. The newly inserted material is underlined. The second sen-
tence is not strictly ungrammatical, but shows an example of adposition mismatch.

in Table 3. Problematic sentences are marked with an asterisk.

A reviewer mentioned their concerns about the fact that adpositions may be more important to gram-
maticality in other languages and that we should also enforce adpositions or other markers of the root
to agree between sub-trees to be swapped. We agree with this remark and note that some UD treebanks
start to be annotated with so called enhanced dependencies which, amongst other improvements, enhance
relation labels with the lemma of the adposition that selects the phrase. Enhanced relations also encode
information about the role of the governor in relative clauses. While the number of enhanced treebanks
is still low, using enhanced relations instead of vanilla ones will further increase grammaticality of the
created sentences.

This being said, the errors made by our method are actually interesting in that they question the notion
of grammaticality. While a French or an English speaker would not produce them, if one was asked to
analyse them within the UD framework, their analysis would likely be similar to the ones produced by
our method.

We should also note that while 14 problematic sentences out of a hundred might seem a lot, it represents
in fact 14 questionable arcs out of several hundreds. This opens a question that we would need to consider
in future work. Namely, assuming that the test sentences are grammatical themselves, to which extent can
the training data be ungrammatical.

5.2 Parsing Results

In a first experiment, we compare tree swapping with previous data augmentation techniques : tree crop-
ping and rotation (Sahin and Steedman, 2018) and nonce sentences (Gulordava et al., 2018). As the
number of new sentences that can be generated through tree swapping grows in O(n**1), where n is the
number of original sentences and k the number of swaps per sentence, we also look at the impact of the
number of generated sentences. As the constraints for tree swapping are strong and therefore limit the
number of sentences that can be generated, in a second experiment, we look at the impact of relaxing
those constraints. Eventually, as the number of generated sentences gets big enough, it becomes possible
to generate a separated development set for validating the trained models, so we also look at the impact
of using an artificial development set.

We run each experiment 8 times (one for each sample). The reported results are LAS scores on the
original dev sets averaged over those 8 runs. For all the experiments, we use an implementation of the
biaffine parser of Dozat et al. (2017) available on Github*. We do not use pretrained word embeddings,
so word and character representations are learned from scratch alongside the rest of the model. In this
reduced data setting, we use 100 dimensions for word embeddings and 50 for characters. We only consider
the task of parsing and use gold segmentation and UPOS tags.

5.2.1 Crop, Rotate, Nonce and Swap

Table 4 reports the average parsing results obtained on the development set using the base sampled training
sets and augmented sets via cropping, rotating, nonce sentences and swapping. For this experiment, we
use the maximum number of sentences generated by cropping and rotating. For nonce sentences and tree
swapping, as it is easy to generate more sentences, we create 7 new sentences per original sentence. We
create 4 nonce sentences per original sentence, for a total of 200 training sentences. For tree swapping,
we experiment with n € {2, 3,4, 9} effectively giving training sets of size 120, 160, 200 and 400. While

*https://github.com/zysite/biaffine-parser

3824

Language En Eu Fi He 1d Ru Ta Tr Vi Wo Avg

Treebank EWT BDT FIB HTB GSD Synt TTB IMST VTB WTB

Base x1 | 2824 2238 1683 3795 2712 2209 27.05 14.68 1479 26.65 | 23.78
Crop x2.34 | 29.16 23.03 15.68 37.83 28.13 22.05 2930 14.58 15.88 27.95 | 24.36
Rotate x2.98 | 29.44 2405 1657 3892 29.19 2289 2937 16.13 1647 28.76 | 25.18
Nonce x5 | 29.38 21.56 1649 39.12 28.12 2270 27.69 1623 16.87 30.07 | 24.82

x3 | 31.67 2436 16.69 38.19 30.11 2328 2935 1634 17.55 3033 | 25.79
x4 | 3147 2352 1646 3921 2994 23.88 29.88 1668 18.34 31.26 | 26.06
x5 | 32.38 2476 17.21 4057 30.52 23.00 2942 1657 1833 31.77 | 2645
x10 | 31.06 2542 17.36 39.85 32.15 2376 29.69 18.27 19.83 33.99 | 27.14

Swap

Table 4: Average labeled attachment scores under various data augmentation techniques. Base is the
results without data augmentation. Crop and Rotate are the corresponding operation from Sahin and
Steedman (2018). Nonce uses sentences generated by replacing single words with compatible ones from
other sentences as in Gulordava et al. (2018). Swap is our new subtree swapping method. Beside each
method name is the average increase of number of sentences compared to the baseline.

this is more sentences than for crop and rotate, the original input is always the same 40 sentences, the
difference comes from augmentation techniques and not from the data, so the comparison remains fair.

We see that on average, all augmentation techniques improve the results over the low-resource baseline.
Swapping is consistently the best option, ignoring typological differences. More in detail, we have a
strict ordering of crop, rotate and swap. Crop, which generates sentences with reduced complexity, has
the lowest score of the three. Rotate, which keeps most of the original complexity but reorders it, is
better. Swap, which potentially introduces new complexity, has the best score. As nonce is a weaker
version of swap that only changes words in place and does not introduce new structures, it has a lower
score than swap. This strongly suggests that a good data augmentation technique needs to create syntactic
complexity.

Furthermore, while swap already beats rotate when they are allowed a comparable number of new
sentences (2.98~3), swap can generate much more new sentences than rotate, and as we see, on average
the score increases with the number of new sentences. This is interesting since not only does the new
method generate a large number of sentences, but the models actually benefit from those sentences.

5.2.2 Constraints

Language En Eu Fi He Id Ru Ta Tr Vi Wo Avg
Treebank | EWT BDT FIB HTB GSD Synt TTB IMST VTB WTB -
Base 28.24 2238 16.83 3795 27.12 2209 27.05 14.68 1479 26.65 | 23.78
PMR 3238 2476 17.21 40.57 30.52 23.00 2942 16.57 18.33 31.77 | 26.45
PM 31.11 2425 17.62 3933 3148 2353 2938 17.50 19.18 32.70 | 26.61
P R 31.34 2401 16.11 40.74 30.61 2390 29.61 16.83 1833 32.13 | 26.36
MR 32.12 2466 1627 39.13 31.85 2296 30.06 1651 18.11 32.48 | 26.42
P 3195 2444 1569 39.76 3134 24.61 29.68 17.70 19.18 32.58 | 26.69
M 3148 25.03 16.54 40.03 30.24 23.02 2990 16.67 17.52 32.67 | 26.31
R 31.98 2548 1692 39.63 30.88 23.65 30.50 17.36 18.11 31.70 | 26.62
None 30.56 23.52 15.58 40.69 30.03 2298 29.58 17.22 17.52 3242 | 26.01
Best 3238 2548 17.62 40.74 31.85 2461 3050 1770 19.18 32.7 | 27.28
Set PMR R PM P R MR P R P PM PM -

Table 5: Average parsing results for different data augmentation constraints. P means that the heads of
swapped trees must agree in POS tags. M means that they must agree in morphological features. R means
that they must agree in dependency relation. None means that no such constraints apply. The last row is
the best of each columns, assuming selection on a validation set. Each original sentence receives 4 new
ones.

Table 5 reports parsing results obtained on the development set with augmented training sets via tree

3825

swapping under all the possible constraint relaxations. Note that while POS tag and morphological fea-
tures are tied to the head of a subtree, the dependency relation depends on the head of the subtree, but
also on its new head and their relative position. We therefore choose to assign the relation of the original
subtree’s head to the newly swapped subtree’s head. This might not be the best choice in all circumstances
and is certainly very language specific.

We notice several interesting things. First, data augmentation is substantially beneficial for all but one
language (Finnish) under all constraints. Then, over all the augmented settings, the one without constraints
(last column) has the lowest score. This shows that constraints are important, supposedly because they
help preserve grammaticality. And, as expected, not all constraints fit all languages equally well.

While some language/constraint scores might be surprising, it is important to note that we only par-
tially relax those constraints. As we focus on a rather small subset of POS tags and on core dependency
relations, relaxing some constraints might not have as strong an effect as if we had allowed the whole
range of tree swapping in the first place. Even when relaxing the POS constraint, we only allow verbs,
nouns, proper nouns and adjectives to move. Furthermore, in some languages there might be a strong
overlap between relations and POS tags or relations and morphological features, dampening even more
the effect of relaxing a constraint. For example, in a language where nouns inflect for case but verbs do
not, morphological features alone will most of the time be sufficient to ensure that we do not swap verbs
with nouns, so the POS constraint is superfluous. In fact, the best constraint on average is just agreeing
POS tags, but it doesn’t work for all languages such as Tamil and Finnish. Yet from the last row, it seems
that the best option is still to pick the best constraint set for each language independently via validation
on held-out data.

Looking more closely at languages individually, general patterns are harder to find. Quite surprisingly,
we see that morphological features alone are not a good constraint. For Vietnamese, which is a morpho-
logically very simple language, morphological features do not add anything. In fact, its PM and P are
almost identical and give the same score. For Russian, cases can be triggered by different prepositions,
meaning that cases need not align with dependency relations, and therefore relying solely on case for
swapping trees may lead to erroneous trees. This is all the more possible given that we reassign subtrees’
head dependency relations, meaning that we can have a prepositional phrase labeled as a direct object
based on the morphology of its head alone. We guess similar reasons are behind the specific patterns of
each language.

Another point to note is that the biaffine parser used for our experiments does not encode morphological
information directly, but uses a character based word representation to indirectly represent morphological
features. However, it has a dedicated POS tag embedding and uses dependency relation directly in its
learning objective. That gives a different role to each constraint, with the morphological feature constraint
being more remote from the parsing algorithm than the other two. We assume different parsing algorithms
relying on different input representations would work differently with those constraints.

5.2.3 Importance of Development Data

When the number of sentences available is very low, it might not be possible to further split them into a
training and a development set. This means that methods that need validations are more prone to over-
fitting as they will use the same data for training and validation. However, our data augmentation method
creates enough new data so that it becomes possible to have a dedicated validation set distinct from the
training set. But as this validation set is generated from the same original data as the training set, we need
to see if it fulfills its role.

Table 6 reports results of parsers trained using different validation sets. The two middle rows (Train and
Dev) are results using data augmented from the same original sentences. Train uses the same augmented
set of 200 sentences for both training and validation (as does Base, but Base only has access the 40 original
sentences), while Dev uses a distinct development set created for validation purpose. For the last row, the
models were validated with the validation set created from another sentence sample.

Whether training benefits from a distinct validation set is language dependent and on average not sig-
nificant. However, as expected, using a validation set based on other sentences is beneficial.

This is interesting since data augmentation is otherwise useful. The newly created sentences seem

3826

Language En Eu Fi He Id Ru Ta Tr Vi Wo Avg
Treebank | EWT BDT FIB HTB GSD Synt TTB IMST VTB WTB -

Base 28.24 2238 16.83 3795 27.12 22.09 27.05 14.68 1479 26.65 | 23.78
Train 3238 24.76 17.21 40.57 3052 23.00 2942 16.57 18.33 31.77 | 26.45
Dev 31.88 24.76 16.44 4022 3092 23.17 2942 16.66 19.08 32.02 | 26.46

Other 33.13 25.21 18.78 40.57 32.88 2533 30.74 17.34 19.38 33.07 | 27.64

Table 6: Average parsing results using various data sets as validation sets. Train uses the augmented
training set for both training and validation of the model. Dev uses a distinct development set created
from the same sentences as the train set for validation. Other uses a development set created from another
set of 40 sentences for validation.

diverse enough to improve the quality of the learnt models, but not enough to make a real difference
when it comes to validation.

A likely explanation is that while the parser sees new structures in the augmented data, the basic un-
derlying information, especially the vocabulary, remains the same. Thus models validated on a created
development set (different structure, but same vocabulary) may be pushed to rely more on vocabulary than
on the actual dependency structure. On the other hand, models validated on a different set of sentences
(different structure and different vocabulary) are pushed to pay more attention to structure since they need
to handle unseen words.

6 Conclusion

In this paper, we have presented a new language-agnostic data augmentation technique based on depen-
dency subtree swapping for creating new dependency trees. We also presented a method for performing
more faithful low-resource experiments using high-resource languages by sampling training data under
a distribution that favors shorter sentences to mimic the sentence length distribution of low-resource lan-
guages.

We have shown that our newly proposed tree swapping method consistently outperforms previously
proposed augmentation techniques based on tree morphing. We have also shown that our method can
create many new sentences and that they are useful for parser training as the score increases with the
number of sentences. This is important since contrary to previous tree morphing techniques, the num-
ber of sentences created by tree swapping is potentially unbounded. Then, we have shown that relaxing
the strong swapping constraints on a per language basis further improves the results. But that the lan-
guage/constraints relation is not necessarily clear. Finally, we saw that despite being useful for training
parsers, the created sentences are not diverse enough to be useful for model validation.

Previous works have demonstrated the possibility of training parsers with incomplete annotation
(Lacroix et al., 2016). As a few generated sentences may be odd sounding or slightly ungrammatical, it
would be interesting to see how parsers fare when trained with sound trees over ungrammatical sentences.
We keep it as a future work. We also need to further investigate the three-way interaction between lan-
guages, augmentation techniques and parsing algorithms, as apparently not all augmentation techniques
fare as well for all languages. Mixing data augmentation policies might also have a positive impact. More
generally, it would be interesting to see how far a parser can go with only a handful of annotated sentences.

Acknowledgments

This work has received funding from the European Research Council (ERC), under the European Union’s
Horizon 2020 research and innovation programme (FASTPARSE, grant agreement No 714150), from
MINECO (ANSWER-ASAP, TIN2017-85160-C2-1-R), from Xunta de Galicia (ED431C 2020/11), and
from Centro de Investigacién de Galicia ‘CITIC’, funded by Xunta de Galicia and the European Union
(European Regional Development Fund - Galicia 2014-2020 Program), by grant ED431G 2019/01.

3827

References

Lauriane Aufrant, Guillaume Wisniewski, and Frangois Yvon. 2016. Zero-resource Dependency Parsing: Boost-
ing Delexicalized Cross-lingual Transfer with Linguistic Knowledge. In COLING 2016, the 26th International
Conference on Computational Linguistics, pages 119-130, Osaka, Japan. The COLING 2016 Organizing Com-
mittee.

Timothy Dozat, Peng Qi, and Christopher D. Manning. 2017. Stanford’s graph-based neural dependency parser
at the conll 2017 shared task. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, pages 20-30, Vancouver, Canada, August. Association for Computational
Linguistics.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco Baroni. 2018. Colorless green
recurrent networks dream hierarchically. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pages 1195-1205, New Orleans, Louisiana, June. Association for Computational Linguistics.

Ophélie Lacroix, Lauriane Aufrant, Guillaume Wisniewski, and Frangois Yvon. 2016. Frustratingly easy cross-
lingual transfer for transition-based dependency parsing. In HLT-NAACL.

David McClosky, Eugene Charniak, and Mark Johnson. 2006. Effective self-training for parsing. In Proceedings
of the Main Conference on Human Language Technology Conference of the North American Chapter of the As-
sociation of Computational Linguistics, HLT-NAACL ’06, pages 152—159, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011. Multi-source transfer of delexicalized dependency parsers.
In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 62—72.
Association for Computational Linguistics.

Balaji Rajagopalan and Upmanu Lall. 1995. A kernel estimator for discrete distributions.

Mohammad Sadegh Rasooli and Michael Collins. 2019. Low-resource syntactic transfer with unsupervised source
reordering.

Gozde Giil Sahin and Mark Steedman. 2018. Data augmentation via dependency tree morphing for low-resource
languages. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 5004-5009, Brussels, Belgium, October-November. Association for Computational Linguistics.

Clara Vania, Yova Kementchedjhieva, Anders Sggaard, and Adam Lopez. 2019. A systematic comparison of
methods for low-resource dependency parsing on genuinely low-resource languages. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 1105-1116, Hong Kong, China, November. Association
for Computational Linguistics.

Dingquan Wang and Jason Eisner. 2018. Synthetic data made to order: The case of parsing. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, pages 1325-1337, Brussels, Belgium,
October-November. Association for Computational Linguistics.

Alina Wréblewska and Adam Przepiérkowski. 2012. Induction of dependency structures based on weighted pro-
jection. In Ngoc-Thanh Nguyen, Kiem Hoang, and Piotr J drzejowicz, editors, Computational Collective Intel-
ligence. Technologies and Applications, pages 364-374, Berlin, Heidelberg. Springer Berlin Heidelberg.

Juntao Yu and Bernd Bohnet. 2015. Exploring confidence-based self-training for multilingual dependency parsing
in an under-resourced language scenario. In Proceedings of the Third International Conference on Dependency
Linguistics (Depling 2015), pages 350-358, Uppsala, Sweden, August. Uppsala University, Uppsala, Sweden.

Daniel Zeman, Joakim Nivre, Mitchell Abrams, Noémi Aepli, Zeljko Agié, Lars Ahrenberg, Gabrielé Aleksan-
draviciate, Lene Antonsen, Katya Aplonova, Maria Jesus Aranzabe, Gashaw Arutie, Masayuki Asahara, Luma
Ateyah, Mohammed Attia, Aitziber Atutxa, Liesbeth Augustinus, Elena Badmaeva, Miguel Ballesteros, Esha
Banerjee, Sebastian Bank, Verginica Barbu Mititelu, Victoria Basmov, Colin Batchelor, John Bauer, Sandra
Bellato, Kepa Bengoetxea, Yevgeni Berzak, Irshad Ahmad Bhat, Riyaz Ahmad Bhat, Erica Biagetti, Eck-
hard Bick, Agné Bielinskiené, Rogier Blokland, Victoria Bobicev, Loic Boizou, Emanuel Borges Vdlker, Carl
Borstell, Cristina Bosco, Gosse Bouma, Sam Bowman, Adriane Boyd, Kristina Brokaité, Aljoscha Burchardt,
Marie Candito, Bernard Caron, Gauthier Caron, Tatiana Cavalcanti, Giilsen Cebiroglu Eryigit, Flavio Massim-
iliano Cecchini, Giuseppe G. A. Celano, Slavomir Céplé, Savas Cetin, Fabricio Chalub, Jinho Choi, Yongseok
Cho, Jayeol Chun, Alessandra T. Cignarella, Silvie Cinkovd, Aurélie Collomb, Cagr1 Coltekin, Miriam Con-
nor, Marine Courtin, Elizabeth Davidson, Marie-Catherine de Marneffe, Valeria de Paiva, Elvis de Souza,

3828

Arantza Diaz de Ilarraza, Carly Dickerson, Bamba Dione, Peter Dirix, Kaja Dobrovoljc, Timothy Dozat, Kira
Droganova, Puneet Dwivedi, Hanne Eckhoff, Marhaba Eli, Ali Elkahky, Binyam Ephrem, Olga Erina, Tomaz
Erjavec, Aline Etienne, Wograine Evelyn, Richard Farkas, Hector Fernandez Alcalde, Jennifer Foster, Clau-
dia Freitas, Kazunori Fujita, Katarina GajdoSov4, Daniel Galbraith, Marcos Garcia, Moa Girdenfors, Sebastian
Garza, Kim Gerdes, Filip Ginter, Iakes Goenaga, Koldo Gojenola, Memduh Gokirmak, Yoav Goldberg, Xavier
Gomez Guinovart, Berta Gonzalez Saavedra, Bernadeta Griciuté, Matias Grioni, Normunds Grazitis, Bruno
Guillaume, Céline Guillot-Barbance, Nizar Habash, Jan Haji¢, Jan Haji¢ jr., Mika Himaélédinen, Linh Ha My,
Na-Rae Han, Kim Harris, Dag Haug, Johannes Heinecke, Felix Hennig, Barbora Hladk4, Jaroslava Hlavacov4,
Florinel Hociung, Petter Hohle, Jena Hwang, Takumi Ikeda, Radu Ion, Elena Irimia, Ql4jidé Ishola, Tomas
Jelinek, Anders Johannsen, Fredrik Jgrgensen, Markus Juutinen, Hiiner Kasikara, Andre Kaasen, Nadezhda
Kabaeva, Sylvain Kahane, Hiroshi Kanayama, Jenna Kanerva, Boris Katz, Tolga Kayadelen, Jessica Kenney, Va-
clava Kettnerovd, Jesse Kirchner, Elena Klementieva, Arne Kohn, Kamil Kopacewicz, Natalia Kotsyba, Jolanta
Kovalevskaité, Simon Krek, Sookyoung Kwak, Veronika Laippala, Lorenzo Lambertino, Lucia Lam, Tatiana
Lando, Septina Dian Larasati, Alexei Lavrentiev, John Lee, Phuong L& Hong, Alessandro Lenci, Saran Lert-
pradit, Herman Leung, Cheuk Ying Li, Josie Li, Keying Li, KyungTae Lim, Maria Liovina, Yuan Li, Nikola
Ljubesi¢, Olga Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien Macketanz, Aibek Makazhanov, Michael
Mandl, Christopher Manning, Ruli Manurung, Citdlina Médranduc, David Marecek, Katrin Marheinecke, Héc-
tor Martinez Alonso, André Martins, Jan Masek, Yuji Matsumoto, Ryan McDonald, Sarah McGuinness, Gustavo
Mendonga, Niko Miekka, Margarita Misirpashayeva, Anna Missild, Cétélin Mititelu, Maria Mitrofan, Yusuke
Miyao, Simonetta Montemagni, Amir More, Laura Moreno Romero, Keiko Sophie Mori, Tomohiko Morioka,
Shinsuke Mori, Shigeki Moro, Bjartur Mortensen, Bohdan Moskalevskyi, Kadri Muischnek, Robert Munro,
Yugo Murawaki, Kaili Miiiirisep, Pinkey Nainwani, Juan Ignacio Navarro Horfiiacek, Anna Nedoluzhko, Gunta
Nespore-Bérzkalne, Luong Nguyén Thi, Huyén Nguyén Thi Minh, Yoshihiro Nikaido, Vitaly Nikolaev, Rattima
Nitisaroj, Hanna Nurmi, Stina Ojala, Atul Kr. Ojha, Adédayo Oliokun, Mai Omura, Petya Osenova, Robert
C)stling, Lilja @vrelid, Niko Partanen, Elena Pascual, Marco Passarotti, Agnieszka Patejuk, Guilherme Paulino-
Passos, Angelika Peljak-Lapiniska, Siyao Peng, Cenel-Augusto Perez, Guy Perrier, Daria Petrova, Slav Petrov,
Jason Phelan, Jussi Piitulainen, Tommi A Pirinen, Emily Pitler, Barbara Plank, Thierry Poibeau, Larisa Pono-
mareva, Martin Popel, Lauma Pretkalnina, Sophie Prévost, Prokopis Prokopidis, Adam Przepiérkowski, Tiina
Puolakainen, Sampo Pyysalo, Peng Qi, Andriela Réabis, Alexandre Rademaker, Loganathan Ramasamy, Taraka
Rama, Carlos Ramisch, Vinit Ravishankar, Livy Real, Siva Reddy, Georg Rehm, Ivan Riabov, Michael RieBler,
Erika Rimkuté, Larissa Rinaldi, Laura Rituma, Luisa Rocha, Mykhailo Romanenko, Rudolf Rosa, Davide Rovati,
Valentin Rosca, Olga Rudina, Jack Rueter, Shoval Sadde, Benoit Sagot, Shadi Saleh, Alessio Salomoni, Tanja
Samardzi¢, Stephanie Samson, Manuela Sanguinetti, Dage Sérg, Baiba Saulite, Yanin Sawanakunanon, Nathan
Schneider, Sebastian Schuster, Djamé Seddah, Wolfgang Seeker, Mojgan Seraji, Mo Shen, Atsuko Shimada,
Hiroyuki Shirasu, Muh Shohibussirri, Dmitry Sichinava, Aline Silveira, Natalia Silveira, Maria Simi, Radu
Simionescu, Katalin Simké, Maria Simkovd, Kiril Simov, Aaron Smith, Isabela Soares-Bastos, Carolyn Spa-
dine, Antonio Stella, Milan Straka, Jana Strnadovd, Alane Suhr, Umut Sulubacak, Shingo Suzuki, Zsolt Szantd,
Dima Taji, Yuta Takahashi, Fabio Tamburini, Takaaki Tanaka, Isabelle Tellier, Guillaume Thomas, Liisi Torga,
Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Uematsu, Zdeiika UreSovd, Larraitz Uria,
Hans Uszkoreit, Andrius Utka, Sowmya Vajjala, Daniel van Niekerk, Gertjan van Noord, Viktor Varga, Eric
Villemonte de la Clergerie, Veronika Vincze, Lars Wallin, Abigail Walsh, Jing Xian Wang, Jonathan North
Washington, Maximilan Wendt, Seyi Williams, Mats Wirén, Christian Wittern, Tsegay Woldemariam, Tak-sum
Wong, Alina Wréblewska, Mary Yako, Naoki Yamazaki, Chunxiao Yan, Koichi Yasuoka, Marat M. Yavrumyan,
Zhuoran Yu, Zden&k Zabokrtsky, Amir Zeldes, Manying Zhang, and Hanzhi Zhu. 2019. Universal dependen-
cies 2.5. LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (UFAL), Faculty
of Mathematics and Physics, Charles University.

3829

A Appendices

Nominals | Clauses Modifier words | Function Words
nsubj csubj
Core arguments obj ccomp
iobj xcomp
Non-core dependents | obl advcl advmod aux
vocative discourse cop
expl mark
dislocated
Nominal dependents | nmod acl amod det
appos clf
nummod case
Coordination MWE Loose Special Other
conj fixed list orphan punct
cc flat parataxis goeswith root
compound reparandum | dep

Table 7: Universal Dependency relations. The relations used to identify usable subtrees are on a white
background. The excluded relations are on a gray background.

3830

