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Abstract

In Neural Machine Translation, using word-
level tokens leads to degradation in transla-
tion quality. The dominant approaches use
subword-level tokens, but this increases the
length of the sequences and makes it difficult
to profit from word-level information such as
POS tags or semantic dependencies.

We propose a modification to the Transformer
model to combine subword-level representa-
tions into word-level ones in the first layers
of the encoder, reducing the effective length
of the sequences in the following layers and
providing a natural point to incorporate extra
word-level information.

Our experiments show that this approach main-
tains the translation quality with respect to
the normal Transformer model when no extra
word-level information is injected and that it
is superior to the currently dominant method
for incorporating word-level source language
information to models based on subword-level
vocabularies.

1 Introduction

Currently dominant Neural Machine Translation
(NMT) architectures receive as input sequences of
discrete tokens taken from fixed-size source and
target token vocabularies defined a priori. Before
being fed to the network, the input text is tokenized
and the positions of those tokens within the vo-
cabulary table are the actual network inputs. The
granularity of the tokens in those vocabularies can
range from character-level, to subword-level, to
word-level.

Character-level token granularity, while allow-
ing maximum representation ability with minimal
vocabulary size for alphabet-based scripts, also del-
egates word formation modeling to the network
and makes token sequences to be much longer than
with word-based tokens.

Using word-level tokens leads to very large vo-
cabulary sizes, especially for morphologically rich
languages, where the number of surface forms per
lemma is high. Large token vocabularies are im-
practical for the current neural architectures and
hardware. It is frequent to constrain the vocabu-
lary size to a few tens of thousand tokens, which
is hardly enough to fit the number of symbols in a
complete word-based vocabulary. Compositional
word structures like numbers pose further problems
with such a granularity level, as well as proper
nouns. When word-based vocabularies are used,
the vocabulary is built with the most frequent sur-
face forms in the training data, which normally
leads to degradation of translation quality.

Subword-level token granularity offers a com-
promise between representational power and vo-
cabulary size, especially statistically extracted sub-
word vocabulary strategies like Byte Pair Encoding
(BPE) (Sennrich et al., 2016b).

Models with word-level token vocabularies can
incorporate word-level information as extra input to
the model by combining it one-to-one with the to-
ken representations. Some examples of word-level
information are Part of Speech (POS) tags, syntac-
tic dependency relationships or lemmas. In order
to make use of word-level information in models
with subword-level token vocabularies, a usual ap-
proach is to assign the word information to all its
subwords (Sennrich and Haddow, 2016). This ap-
proach, despite improving the translation quality,
introduces an information assignment mismatch.

We propose to modify the Transformer architec-
ture (Vaswani et al., 2017) to combine the learned
subword representations into word representations
in the encoder block. This allows to naturally in-
corporate any extra word-level information directly
at the level of word-level representations.

This work is structured as follows: the relevant
related work is described in section 2; the proposed
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approach is described in section 3, while the ex-
perimental setup is presented in section 4 and the
results are described and discussed in section 5.
Finally, the conclusions are drawn in section 6.

2 Related Work

The main difficulty in profiting from word-level
information in subword-based NMT architectures
is the word-subword token level mismatch.

Several lines of research have studied how to
combine subword-level representations into word-
level information in a task-agnostic way. While
the approaches by Bojanowski et al. (2017), Zhao
et al. (2018) and Li et al. (2018) aim at computing
pre-trained word representations, other proposals
integrate the computation of the word representa-
tion in the overall NMT model, either combining
information from character level, like those by Lu-
ong and Manning (2016) Costa-jussà and Fonollosa
(2016), from n-gram level, like the one by Ataman
and Federico (2018), or from multiple granulari-
ties like the work by Chen et al. (2018). Some
other approaches like those by Wang et al. (2019)
and Gu et al. (2018b) try to extend this idea to ob-
tain multilingual conceptual representations from
character-level representations.

Nevertheless, in all those approaches, the de-
coder only has access to the aggregated word-
level information and not to the original subword-
level information. This, while mitigating the un-
known word problem, cannot handle the scenario
where copying from source to target is necessary,
like with unseen proper names or with composi-
tional structures like numbers. To the best of our
knowledge, this type of neural architectures that
condense subword/character-level information into
word-level representations have not been used for
integrating extra word-level information as an ad-
ditional input to the model in a translation task.

On the other hand, word level information has
been injected to subword-based NMT models: Sen-
nrich and Haddow (2016) copy the word-level lin-
guistic information (e.g. lemma, POS tag) to each
of the subwords in a word. Such information is
used in an embedding and is concatenated with the
subword token embedding. In this method, the sub-
words are also injected information about whether
they are the leading subword in a word or they ap-
pear in the middle of a sequence of subwords or
they are the last subword.

3 Subword to Word Transformer

In the standard Transformer architecture from
Vaswani et al. (2017), the encoder applies a se-
ries of self-attention layers to the input token em-
beddings. The output of the encoder is then used
at every layer of the decoder as key and value
of the multi-head attention. In these operations,
the token representations in the sequences in the
source batch are masked according to the original
sequence lengths in tokens.
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Figure 1: Subword to Word Transformer model.

We propose to divide the encoder into two blocks
of self-attention layers. The first block receives
the embedded subword-level token representations
and processes them through N

(e)
sw layers of self-

attention like those from the nominal Transformer.
The subword-level representations obtained as re-
sult of the first block are then combined into word
level representations. A second block of N (e)

w self-
attention layers processes these word-level repre-
sentations. The output of the second encoder block
is then fed to the first N (d)

w layers of the decoder,
while the following N

(d)
sw decoder layers are fed

with the output of the first block of the encoder.
The appropriate padding masks are used in the de-
coder depending on whether the encoder output
used is subword or word-level. This architecture is
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shown in Figure 1.

In our first tests we directly used the encoder
word representations as keys and values to every de-
coder layer (instead of using the encoder subword
representations in the last layers of the decoder).
This, however, led to poor results. We understand
that such a configuration made it impossible for
the network to properly handle token copying from
source to target, which is usually needed in cases
of proper nouns or compositional structures like
numbers. Other possible causes for this degrada-
tion could be some mismatch on the encoder side
e.g. positional embeddings being subword-based
but encoder embeddings being word-level. To test
this hypothesis, we added positional encodings af-
ter the point where subword representations are
combined into word-level representations. This led
to no improvement, indicating that the inability to
copy was certainly the cause of the degradation.

The specific approach chosen to combine sub-
word representations into word representations is a
layer of Gated Recurrent Units (GRU) (Cho et al.,
2014), which receives as input the output of the
first encoder block. We take the output of the GRU
at the positions of the last subword tokens in each
word, providing the appropriate padding positions
to handle the minibatch sequences. This way, the
lengths of the sequences in the batch are now the
number of word tokens in each sentence.

Other subword-to-word combination approaches
tested during the early stages of this work in-
cluded using Long-Short Term Memories (LSTM)
(Hochreiter and Schmidhuber, 1997) and simply
adding all subwords within each word.

The proposed approach provides a natural point
to incorporate word-level information: after the
subword-level representations have been combined
into word-level ones. This way, as shown in Figure
1, the extra word-level information is embedded
into a vector space and added to the word-level
representations of the source sentence, after the
word-to-subword combination.

Note that, while applying this approach to the
encoder part is straightforward, applying it to the
decoder presents a key challenge: at inference time,
the target side tokens are generated one by one,
which implies that it is not possible to combine all
of the subword tokens of a word until they have all
been generated.

4 Experimental Setup

We understand that there are two desirable proper-
ties for the proposed word-subword combination
model: to be able to retain the translation quality
obtained with the analogous subword-based model
and to be able to better profit from word-level in-
formation than other approaches.

In order to verify that the translation quality is re-
tained, we performed experiments on the IWSLT14
English-German data, both in English→German
and German→English translation directions, with
a BPE shared subword vocabulary with 10K merge
operations. We studied the resulting translation
quality with different hyperparameter sets in order
to understand their effect on the model.

In order to study the effectiveness of the pro-
posed model with other approaches to incorpo-
rate word-level information into a subword-based
model, we used the WMT16 English-Romanian
data with the back-translated synthetic data from
(Sennrich et al., 2016a), using a shared subword
vocabulary of 40k merge operations.

We used the proposal by (Sennrich and Haddow,
2016) as baseline, and compared it to a vanilla
Transformer baseline and to our proposed method.

For all experiments, we used the fairseq li-
brary (Ott et al., 2019), either with its built-in mod-
els for the baselines or with custom model imple-
mentations for the approach by Sennrich and Had-
dow (2016) and for our own proposed architecture.

For the IWSLT14 de-en and en-de baselines we
used the Transformer architecture (Vaswani et al.,
2017) with the hyperparameters proposed by the
fairseq authors1, namely 6 layers in encoder
and decoder, 4 attention heads, embedding size
of 512 and 1024 for the feedforward expansion
size, together with dropout of 0.3 and a total batch
size of 4000 tokens, using label smoothing of 0.1.
For the WMT16 en-ro baseline we used the base
configuration of the Transformer model offered in
fairseq, that is, 6 layers in encoder and decoder,
8 attention heads, embedding size of 512 and 2048
for the feedforward expansion size, together with
dropout of 0.1 and total batch size of 32000 tokens,
without label smoothing (following the baseline
used by Gu et al. (2018a)).

All reported BLEU scores are computed with
the model weights averaged over the last 10 check-
points after training until convergence.

1https://github.com/pytorch/fairseq/
tree/master/examples/translation

https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/pytorch/fairseq/tree/master/examples/translation
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5 Results

We studied the effect of different hyperparameter
values over translation quality. We measured the re-
sults obtained on the IWSLT14 de-en data by using
different types of subword combination strategies,
as well as combining subwords at different layer
levels, chosen arbitrarily. Table 1 shows how the
subword combination strategy that obtains best re-
sults is to use GRU units that receive the subwords
as input and return the outputs at the positions of
the final subword in each word. The difference
with the other alternatives is minimal, though. The
rest of the hyperparameters are the same as the
IWSLT14 baseline, with a total batch size of 12000
and the subword merging layers being N

(e)
sw = 3

and N
(d)
sw = 3.

Combination BLEU
Addition 33.93
GRU 34.02
LSTM 33.92

Table 1: BLEU scores on IWSLT14 German-English
for different subword combination strategies.

Regarding the influence over the translation qual-
ity of the level at which subword representations
are merged, Table 2 shows that the best results are
obtained when merging subwords after the fifth en-
coder layer, and using again the subword represen-
tations in the decoder after the third layer. The rest
of hyperparameters are the same as the IWSLT14
baseline, with a total batch size of 12000 and GRU
as subword combination strategy.

N
(e)
sw N

(d)
sw BLEU

3 5 33.53
3 3 34.02
5 3 34.46

Table 2: BLEU scores on the IWSLT14 German-
English test set for different values of N (e)

sw and N
(d)
sw ,

using GRU as subword combination strategy.

Once determined that using GRU as subword
combination and setting N

(e)
sw = 5 and N

(d)
sw = 3 is

the hyperparameter configuration that gives the best
results, we checked whether the proposed architec-
ture maintains the translation quality with respect
to a vanilla Transformer baseline. As shown in
Table 3, the BLEU scores are practically the same
for both architectures and both German→English

while for English→German there is a small de-
crease. As commented in section 4, the baseline
uses a batch size of 4000 while our approach uses
12000. Note that for the baseline architecture,
larger batch sizes actually decrease the resulting
translation quality.

en-de de-en
Base Transformer 28.75 34.44
Word-subword model 28.29 34.46

Table 3: BLEU scores on the IWSLT14 German-
English data, using no extra word-level information.

Finally, in order to assess our proposed approach
at incorporating extra word-level information, we
compared it against the approach by Sennrich and
Haddow (2016) (with the Transformer as base ar-
chitecture), which copies the word level informa-
tion to each of the subwords in the word; in our im-
plementation, the subword embedding and the lin-
guistic information are combined by adding them
together, which is analogous to the original alterna-
tive that concatenates them. For the vanilla Trans-
former and the approach by Sennrich and Haddow
(2016) we used a total batch size of 32000 while
for the word-subword model (our proposal), we
used a total batch size of 40000, GRU as subword
combination strategy and N

(e)
sw = 5 and N

(d)
sw = 3.

en-ro
Base Transformer 27.02
Word-level info copied to subwords 27.29
Word-subword model + word-level info 27.82

Table 4: BLEU scores measured on the WMT16
English-Romanian data, with lemmas as linguistic info.

The word-level linguistic information used was
only the lemma (using a vocabulary of 40k lem-
mas), which is the feature that should provide the
largest improvement according to Sennrich and
Haddow (2016). We used Stanford CoreNLP (Man-
ning et al., 2014) to annotate the corpus with the
English lemmas. The obtained results are shown in
Table 4, where our proposed approach obtains the
best BLEU score compared to the base Transformer
model (Vaswani et al., 2017) without any word-
level information, and to copying the word-level
info to subwords (Sennrich and Haddow, 2016).
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6 Conclusion

In this work, we proposed a modification to the
Transformer architecture to merge the subword rep-
resentations from the first layers of the encoder
into word-level representations. Merging word-
level representations inside the model allows it to
use the subword-level representations in the final
decoder layers so that it can handle compositional
structures and other situations where copying from
source is needed. This approach provided an ap-
propriate point to incorporate linguistic word-level
information and it is superior at doing so compared
with the reference approach by Sennrich and Had-
dow (2016).

Future extensions to this work may include ap-
plying it to character-level instead of subword
representations, and using it for morphologically
richer languages, especially low-resourced agglu-
tinative ones, where our approach, together with
the incorporation of linguistic information, may
provide larger improvements in translation qual-
ity. Further extensions may include studying the
behavior of more powerful subword combination
strategies (e.g. convolutions, self-attention) and the
application of subword merging to the target side.
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