
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7027–7034
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

7027

Sentence Meta-Embeddings for Unsupervised Semantic Textual Similarity

Nina Poerner∗† and Ulli Waltinger† and Hinrich Schütze∗
∗Center for Information and Language Processing, LMU Munich, Germany

†Corporate Technology Machine Intelligence (MIC-DE), Siemens AG Munich, Germany
poerner@cis.uni-muenchen.de | inquiries@cislmu.org

Abstract

We address the task of unsupervised Seman-
tic Textual Similarity (STS) by ensembling di-
verse pre-trained sentence encoders into sen-
tence meta-embeddings. We apply, extend
and evaluate different meta-embedding meth-
ods from the word embedding literature at
the sentence level, including dimensionality re-
duction (Yin and Schütze, 2016), generalized
Canonical Correlation Analysis (Rastogi et al.,
2015) and cross-view auto-encoders (Bolle-
gala and Bao, 2018). Our sentence meta-
embeddings set a new unsupervised State of
The Art (SoTA) on the STS Benchmark and on
the STS12–STS16 datasets, with gains of be-
tween 3.7% and 6.4% Pearson’s r over single-
source systems.

1 Introduction

Word meta-embeddings have been shown to exceed
single-source word embeddings on word-level se-
mantic benchmarks (Yin and Schütze, 2016; Bolle-
gala and Bao, 2018). Presumably, this is because
they combine the complementary strengths of their
components.

There has been recent interest in pre-trained “uni-
versal” sentence encoders, i.e., functions that en-
code diverse semantic features of sentences into
fixed-size vectors (Conneau et al., 2017). Since
these sentence encoders differ in terms of their ar-
chitecture and training data, we hypothesize that
their strengths are also complementary and that
they can benefit from meta-embeddings.

To test this hypothesis, we adapt different meta-
embedding methods from the word embedding lit-
erature. These include dimensionality reduction
(Yin and Schütze, 2016), cross-view autoencoders
(Bollegala and Bao, 2018) and Generalized Canon-
ical Correlation Analysis (GCCA) (Rastogi et al.,
2015). The latter method was also used by Poerner

and Schütze (2019) for domain-specific Duplicate
Question Detection.

Our sentence encoder ensemble includes three
models from the recent literature: Sentence-BERT
(Reimers and Gurevych, 2019), the Universal Sen-
tence Encoder (Cer et al., 2017) and averaged
ParaNMT vectors (Wieting and Gimpel, 2018).
Our meta-embeddings outperform every one of
their constituent single-source embeddings on
STS12–16 (Agirre et al., 2016) and on the STS
Benchmark (Cer et al., 2017). Crucially, since our
meta-embeddings are agnostic to the contents of
their ensemble, future improvements may be possi-
ble by adding new encoders.

2 Related work

2.1 Word meta-embeddings

Word embeddings are functions that map word
types to vectors. They are typically trained on un-
labeled corpora and capture word semantics (e.g.,
Mikolov et al. (2013); Pennington et al. (2014)).

Word meta-embeddings combine ensembles of
word embeddings by various operations: Yin and
Schütze (2016) use concatenation, SVD and lin-
ear projection, Coates and Bollegala (2018) show
that averaging word embeddings has properties
similar to concatenation. Rastogi et al. (2015)
apply generalized canonical correlation analysis
(GCCA) to an ensemble of word vectors. Bollegala
and Bao (2018) learn word meta-embeddings us-
ing autoencoder architectures. Neill and Bollegala
(2018) evaluate different loss functions for autoen-
coder word meta-embeddings, while Bollegala et al.
(2018) explore locally linear mappings.

2.2 Sentence embeddings

Sentence embeddings are methods that produce
one vector per sentence. They can be grouped into
two categories:

7028

F1 (e.g., SBERT)
...

FJ (e.g., USE)

(pre-trained encoders)

S ⊂ S (e.g., BWC)

(unlabeled corpus) X1 ∈ R|S|×d1

...
XJ ∈ R|S|×dJ

(cached training data)

Fit meta-embedding params

(e.g., Θ for GCCA)

(see Sections 3.2, 3.3, 3.4)

Fmeta (s1, s2)

(sentence pair)

ŷ = cos(Fmeta(s1),Fmeta(s2))

(predicted sentence similarity score)

Figure 1: Schematic depiction: Trainable sentence meta-embeddings for unsupervised STS.

(a) Word embedding average sentence encoders
take a (potentially weighted) average of pre-trained
word embeddings. Despite their inability to under-
stand word order, they are surprisingly effective
on sentence similarity tasks (Arora et al., 2017;
Wieting and Gimpel, 2018; Ethayarajh, 2018)

(b) Complex contextualized sentence encoders,
such as Long Short Term Memory Networks
(LSTM) (Hochreiter and Schmidhuber, 1997) or
Transformers (Vaswani et al., 2017). Contextual-
ized encoders can be pre-trained as unsupervised
language models (Peters et al., 2018; Devlin et al.,
2019), but they are usually improved on supervised
transfer tasks such as Natural Language Inference
(Bowman et al., 2015).

2.3 Sentence meta-embeddings
Sentence meta-embeddings have been explored less
frequently than their word-level counterparts. Kiela
et al. (2018) create meta-embeddings by training
an LSTM sentence encoder on top of a set of dy-
namically combined word embeddings. Since this
approach requires labeled data, it is not applicable
to unsupervised STS.

Tang and de Sa (2019) train a Recurrent Neural
Network (RNN) and a word embedding average
encoder jointly on a large corpus to predict similar
representations for neighboring sentences. Their
approach trains both encoders from scratch, i.e., it
cannot be used to combine existing encoders.

Poerner and Schütze (2019) propose a GCCA-
based multi-view sentence encoder that combines
domain-specific and generic sentence embeddings
for unsupervised Duplicate Question Detection. In
this paper, we extend their approach by exploring
a wider range of meta-embedding methods and an
ensemble that is more suited to STS.

2.4 Semantic Textual Similarity (STS)
Semantic Textual Similarity (STS) is the task of
rating the similarity of two natural language sen-
tences on a real-valued scale. Related applications

are semantic search, duplicate detection and sen-
tence clustering.

Supervised SoTA systems for STS typically ap-
ply cross-sentence attention (Devlin et al., 2019;
Raffel et al., 2019). This means that they do not
scale well to many real-world tasks. Supervised
“siamese” models (Reimers and Gurevych, 2019)
on the other hand, while not competitive with cross-
sentence attention, can cache sentence embeddings
independently of one another. For instance, to
calculate the pairwise similarities of N sentences,
a cross-sentence attention system must calculate
O(N2) slow sentence pair embeddings, while the
siamese model calculates O(N) slow sentence em-
beddings and O(N2) fast vector similarities.

Our meta-embeddings are also cacheable (and
hence scalable), but they do not require supervi-
sion.

3 Sentence meta-embedding methods

Below, we assume access to an ensemble of pre-
trained sentence encoders, denoted F1 . . .FJ . Ev-
ery Fj maps from the (infinite) set of possible sen-
tences S to a fixed-size dj-dimensional vector.

Word meta-embeddings are usually learned from
a finite vocabulary of word types (Yin and Schütze,
2016). Sentence embeddings lack such a “vocabu-
lary”, as they can encode any member of S. There-
fore, we train on a sample S ⊂ S, i.e., on a corpus
of unlabeled sentences.

3.1 Naive meta-embeddings

We create naive sentence meta-embeddings by con-
catenating (Yin and Schütze, 2016) or averaging1

(Coates and Bollegala, 2018) sentence embeddings.

Fconc(s′) =

F̂1(s
′)

. . .

F̂J(s′)


1If embeddings have different dimensionalities, we pad the

shorter ones with zeros.

7029

Favg(s′) =
∑
j

F̂j(s′)
J

Note that we length-normalize all embeddings to
ensure equal weighting:

F̂j(s) =
Fj(s)
||Fj(s)||2

3.2 SVD
Yin and Schütze (2016) use Singular Value De-
composition (SVD) to compactify concatenated
word embeddings. The method is straightfor-
ward to extend to sentence meta-embeddings. Let
Xconc ∈ R|S|×

∑
j dj with

xconc
n = Fconc(sn)− Es∈S [Fconc(s)]

Let USVT ≈ Xconc be the d-truncated SVD. The
SVD meta-embedding of a new sentence s′ is:

F svd(s′) = VT (Fconc(s′)− Es∈S [Fconc(s)])

3.3 GCCA
Given random vectors x1,x2, Canonical Correla-
tion Analysis (CCA) finds linear projections such
that θT1 x1 and θT2 x2 are maximally correlated.
Generalized CCA (GCCA) extends CCA to three
or more random vectors. Bach and Jordan (2002)
show that a variant of GCCA reduces to a general-
ized eigenvalue problem on block matrices:

ρ

Σ1,1 0 0
0 Σ... 0
0 0 ΣJ,J

θ1

. . .
θJ


=

 0 Σ... Σ1,J

Σ... 0 Σ...

ΣJ,1 Σ... 0

θ1

. . .
θJ


where

Σj,j′ = Es∈S [(Fj(s)− µj)(Fj′(s)− µj′)
T]

µj = Es∈S [Fj(s)]

For stability, we add τ
dj

∑dj
n=1 diag(Σj,j)n to

diag(Σj,j), where τ is a hyperparameter. We stack
the eigenvectors of the top-d eigenvalues into ma-
trices Θj ∈ Rd×dj and define the GCCA meta-
embedding of sentence s′ as:

Fgcca(s′) =

J∑
j=1

Θj(Fj(s′)− µj)

Fgcca corresponds to MV-DASE in Poerner and
Schütze (2019).

loss function
MSE MAE KLD (1-COS)2

nu
m

be
r

hi
dd

en
la

ye
rs 0 83.0/84.2 84.2/85.1 83.0/84.2 82.4/83.5

1 82.7/83.9 83.8/84.6 85.1/85.5 83.3/83.4
2 82.5/82.8 81.3/82.1 83.3/83.4 82.3/82.3

τ = 10−2 τ = 10−1 τ = 100 τ = 101 τ = 102

84.2/84.1 84.8/84.7 85.5/85.7 85.5/86.1 84.9/85.9

Table 1: Hyperparameter search on STS Benchmark de-
velopment set for AE (top) and GCCA (bottom). Pear-
son’s r × 100 / Spearman’s ρ× 100.

3.4 Autoencoders (AEs)
Autoencoder meta-embeddings are trained by gra-
dient descent to minimize some cross-embedding
reconstruction loss. For example, Bollegala and
Bao (2018) train feed-forward networks (FFN) to
encode two sets of word embeddings into a shared
space, and then reconstruct them such that mean
squared error with the original embeddings is mini-
mized. Neill and Bollegala (2018) evaluate differ-
ent reconstruction loss functions: Mean Squared
Error (MSE), Mean Absolute Error (MAE), KL-
Divergence (KLD) or squared cosine distance (1-
COS)2.

We extend their approach to sentence encoders
as follows: Every sentence encoder Fj has a train-
able encoder Ej : Rdj → Rd and a trainable de-
coderDj : Rd → Rdj , where d is a hyperparameter.
Our training objective is to reconstruct every em-
bedding xj′ from every Ej(xj). This results in J2

loss terms, which are jointly optimized:

L(x1 . . .xJ) =
∑
j

∑
j′

l(xj′ ,Dj′(Ej(xj)))

where l is one of the reconstruction loss functions
listed above. The autoencoder meta-embedding of
a new sentence s′ is:

Fae(s′) =
∑
j

Ej(Fj(s′))

4 Experiments

4.1 Data
We train on all sentences of length < 60 from
the first file (news.en-00001-of-00100) of the tok-
enized, lowercased Billion Word Corpus (BWC)
(Chelba et al., 2014) (∼302K sentences). We evalu-
ate on STS12 – STS16 (Agirre et al., 2016) and the
unsupervised STS Benchmark test set (Cer et al.,

7030

dimensionality STS12 STS13 STS14 STS15 STS16 STS-B

single:ParaNMT d = 600 67.5/66.3 62.7/62.8 77.3/74.9 80.3/80.8 78.3/79.1 79.8/78.9
single:USE d = 512 62.6/63.8 57.3/57.8 69.5/66.0 74.8/77.1 73.7/76.4 76.2/74.6
single:SBERT d = 1024 66.9/66.8 63.2/64.8 74.2/74.3 77.3/78.3 72.8/75.7 76.2/79.2

single:ParaNMT – up-projection∗ d = 1024 67.3/66.2 62.1/62.4 77.1/74.7 79.7/80.2 77.9/78.7 79.5/78.6
single:USE – up-projection∗ d = 1024 62.4/63.7 57.0/57.5 69.4/65.9 74.7/77.1 73.6/76.3 76.0/74.5

meta:conc d = 2136 72.7/71.3 68.4/68.6 81.0/79.0 84.1/85.5 82.0/83.8 82.8/83.4
meta:avg d = 1024 72.5/71.2 68.1/68.3 80.8/78.8 83.7/85.1 81.9/83.6 82.5/83.2
meta:svd d = 1024 71.9/70.8 68.3/68.3 80.6/78.6 83.8/85.1 81.6/83.6 83.4/83.8

meta:gcca (hyperparams on dev set) d = 1024 72.8/71.6 69.6/69.4 81.7/79.5 84.2/85.5 81.3/83.3 83.9/84.4
meta:ae (hyperparams on dev set) d = 1024 71.5/70.6 68.5/68.4 80.1/78.5 82.5/83.1 80.4/81.9 82.1/83.3

Ethayarajh (2018) (unsupervised) 68.3/- 66.1/- 78.4/- 79.0/- -/- 79.5/-
Wieting and Gimpel (2018) (unsupervised) 68.0/- 62.8/- 77.5/- 80.3/- 78.3/- 79.9/-
Tang and de Sa (2019) (unsupervised meta) 64.0/- 61.7/- 73.7/- 77.2/- 76.7/- -
Hassan et al. (2019)† (unsupervised meta) 67.7/- 64.6/- 75.6/- 80.3/- 79.3/- 77.7/-
Poerner and Schütze (2019) (unsupervised meta) -/- -/- -/- -/- -/- 80.4/-

Reimers and Gurevych (2019) (sup. siamese SoTA) -/- -/- -/- -/- -/- -/86.2
Raffel et al. (2019) (supervised SoTA) -/- -/- -/- -/- -/- 93.1/92.8

Table 2: Results on STS12–16 and STS Benchmark test set. STS12–16: mean Pearson’s r × 100 / Spearman’s
ρ × 100. STS Benchmark: overall Pearson’s r × 100 / Spearman’s ρ × 100. Evaluated by SentEval (Conneau
and Kiela, 2018). Boldface: best in column (except supervised). Underlined: best single-source method. ∗Results
for up-projections are averaged over 10 random seeds. †Unweighted average computed from Hassan et al. (2019,
Table 8). There is no supervised SoTA on STS12–16, as they are unsupervised benchmarks.

2017).2 These datasets consist of triples (s1, s2, y),
where s1, s2 are sentences and y is their ground
truth semantic similarity. The task is to predict
similarity scores ŷ that correlate well with y. We
predict ŷ = cos(F(s1),F(s2)).

4.2 Metrics

Previous work on STS differs with respect to (a) the
correlation metric and (b) how to aggregate the sub-
testsets of STS12–16. To maximize comparability,
we report both Pearson’s r and Spearman’s ρ. On
STS12–16, we aggregate by a non-weighted aver-
age, which diverges from the original shared tasks
(Agirre et al., 2016) but ensures comparability with
more recent baselines (Wieting and Gimpel, 2018;
Ethayarajh, 2018). Results for individual STS12–
16 sub-testsets can be found in the Appendix.

4.3 Ensemble

We select our ensemble according to the following
criteria: Every encoder should have near-SoTA per-
formance on the unsupervised STS benchmark, and
the encoders should not be too similar with regards
to their training regime. For instance, we do not

2We use SentEval for evaluation (Conneau and Kiela,
2018). Since original SentEval does not support the unsu-
pervised STS Benchmark, we use a non-standard repository
(https://github.com/sidak/SentEval). We man-
ually add the missing STS13-SMT subtask.

use Ethayarajh (2018), which is a near-SoTA unsu-
pervised method that uses the same word vectors
as ParaNMT (see below).

We choose the Universal Sentence Encoder
(USE)3 (Cer et al., 2018), which is a Trans-
former trained on skip-thought, conversation re-
sponse prediction and Natural Language Inference
(NLI), Sentence-BERT (SBERT)4 (Reimers and
Gurevych, 2019), which is a pre-trained BERT
transformer finetuned on NLI, and ParaNMT5 (Wi-
eting and Gimpel, 2018), which averages word and
3-gram vectors trained on backtranslated similar
sentence pairs. To our knowledge, ParaNMT is the
current single-source SoTA on the unsupervised
STS Benchmark.

4.4 Hyperparameters

We set d = 1024 in all experiments, which cor-
responds to the size of the biggest single-source
embedding (SBERT). The value of τ (GCCA), as
well as the autoencoder depth and loss function are
tuned on the STS Benchmark development set (see

3https://tfhub.dev/google/
universal-sentence-encoder/2

4https://github.com/UKPLab/
sentence-transformers. We use the large-nli-
mean-tokens model, which was not finetuned on STS.

5https://github.com/jwieting/
para-nmt-50m

https://github.com/sidak/SentEval
https://tfhub.dev/google/universal-sentence-encoder/2
https://tfhub.dev/google/universal-sentence-encoder/2
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://github.com/jwieting/para-nmt-50m
https://github.com/jwieting/para-nmt-50m

7031

full without without without
ensemble ParaNMT USE SBERT

meta:svd 85.0/85.4 79.6/81.3 79.7/81.4 83.7/83.5
meta:gcca 85.5/86.1 84.9/84.8 83.8/83.8 85.4/85.4
meta:ae 85.1/85.5 76.5/80.3 82.5/83.5 28.7/41.0

Table 3: Ablation study: Pearson’s r × 100 / Spear-
man’s ρ × 100 on STS Benchmark development set
when one encoder is left out.

Table 1). We train the autoencoder for a fixed num-
ber of 500 epochs with a batch size of 10,000. We
use the Adam optimizer (Kingma and Ba, 2014)
with β1 = 0.9, β2 = 0.999 and learning rate 0.001.

4.5 Baselines
Our main baselines are our single-source embed-
dings. Wieting and Kiela (2019) warn that high-
dimensional sentence representations can have
an advantage over low-dimensional ones, i.e.,
our meta-embeddings might be better than lower-
dimensional single-source embeddings due to size
alone. To exclude this possibility, we also up-
project smaller embeddings by a random d × dj
matrix sampled from:

U(− 1√
dj
,

1√
dj

)

Since the up-projected sentence embeddings per-
form slightly worse than their originals (see Table
2, rows 4–5), we are confident that performance
gains by our meta-embeddings are due to content
rather than size.

4.6 Results
Table 2 shows that even the worst of our meta-
embeddings consistently outperform their single-
source components. This underlines the overall
usefulness of ensembling sentence encoders, irre-
spective of the method used.

GCCA outperforms the other meta-embeddings
on five out of six datasets. We set a new unsu-
pervised SoTA on the unsupervised STS Bench-
mark test set, reducing the gap with the supervised
siamese SoTA of Reimers and Gurevych (2019)
from 7% to 2% Spearman’s ρ.

Interestingly, the naive meta-embedding meth-
ods (concatenation and averaging) are competitive
with SVD and the autoencoder, despite not needing
any unsupervised training. In the case of concatena-
tion, this comes at the cost of increased dimension-
ality, which may be problematic for downstream ap-
plications. The naive averaging method by Coates

and Bollegala (2018) however does not have this
problem, while performing only marginally worse
than concatenation.

4.7 Ablation

Table 3 shows that all single-source embeddings
contribute positively to the meta-embeddings,
which supports their hypothesized complementar-
ity. This result also suggests that further improve-
ments may be possible by extending the ensemble.

4.8 Computational cost

4.8.1 Training

All of our meta-embeddings are fast to train, either
because they have closed-form solutions (GCCA
and SVD) or because they are lightweight feed-
forward nets (autoencoder). The underlying sen-
tence encoders are more complex and slow, but
since we do not update them, we can apply them
to the unlabeled training data once and then reuse
the results as needed.

4.8.2 Inference

As noted in Section 2.4, cross-sentence attention
systems do not scale well to many real-world STS-
type tasks, as they do not allow individual sen-
tence embeddings to be cached. Like Reimers
and Gurevych (2019), our meta-embeddings do
not have this problem. This should make them
more suitable for tasks like sentence clustering or
real-time semantic search.

5 Conclusion

Inspired by the success of word meta-embeddings,
we have shown how to apply different meta-
embedding techniques to ensembles of sentence en-
coders. All sentence meta-embeddings consistently
outperform their individual single-source compo-
nents on the STS Benchmark and the STS12–16
datasets, with a new unsupervised SoTA set by our
GCCA meta-embeddings. Because sentence meta-
embeddings are agnostic to the size and specifics
of their ensemble, it should be possible to add new
encoders to the ensemble, potentially improving
performance further.

Acknowledgments. This work was supported by
Siemens AG and by the European Research Coun-
cil (# 740516).

7032

References
Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,

Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016
Task 1: Semantic textual similarity, monolingual and
cross-lingual evaluation. In International Workshop
on Semantic Evaluation, pages 497–511, San Diego,
USA.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In ICLR, Toulon, France.

Francis R Bach and Michael I Jordan. 2002. Kernel
independent component analysis. JMLR, 3:1–48.

Danushka Bollegala and Cong Bao. 2018. Learning
word meta-embeddings by autoencoding. In COL-
ING, pages 1650–1661, Santa Fe, USA.

Danushka Bollegala, Kohei Hayashi, and Ken-ichi
Kawarabayashi. 2018. Think globally, embed lo-
cally – locally linear meta-embedding of words. In
ICJAI, pages 3970–3976, Stockholm, Sweden.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP, pages 632–642, Lisbon, Portugal.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In International
Workshop on Semantic Evaluation, pages 1–14, Van-
couver, Canada.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal Sentence Encoder for English.
In EMNLP, pages 169–174, Brussels, Belgium.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2014. One billion word benchmark for mea-
suring progress in statistical language modeling. In
INTERSPEECH, pages 2635–2639, Singapore.

Joshua Coates and Danushka Bollegala. 2018. Frus-
tratingly easy meta-embedding – computing meta-
embeddings by averaging source word embeddings.
In NAACL-HLT, pages 194–198, New Orleans,
USA.

Alexis Conneau and Douwe Kiela. 2018. SentEval: An
evaluation toolkit for universal sentence representa-
tions. In LREC, pages 1699–1704, Miyazaki, Japan.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In EMNLP, pages
670–680, Copenhagen, Denmark.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, New Orleans, USA.

Kawin Ethayarajh. 2018. Unsupervised random walk
sentence embeddings: A strong but simple baseline.
In Workshop on Representation Learning for NLP,
pages 91–100, Melbourne, Australia.

Basma Hassan, Samir E Abdelrahman, Reem Bahgat,
and Ibrahim Farag. 2019. UESTS: An unsupervised
ensemble semantic textual similarity method. IEEE
Access, 7:85462–85482.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Douwe Kiela, Changhan Wang, and Kyunghyun Cho.
2018. Dynamic meta-embeddings for improved sen-
tence representations. In EMNLP, pages 1466–1477,
Brussels, Belgium.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In NeurIPS, pages 3111–3119, Lake Tahoe,
USA.

James O’ Neill and Danushka Bollegala. 2018.
Angular-based word meta-embedding learning.
arXiv preprint arXiv:1808.04334.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In EMNLP, pages 1532–1543, Doha,
Qatar.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL-HLT, pages 2227–2237, New
Orleans, USA.

Nina Poerner and Hinrich Schütze. 2019. Multi-
view domain adapted sentence embeddings for low-
resource unsupervised duplicate question detection.
In EMNLP-IJCNLP, Hong Kong, China.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pushpendre Rastogi, Benjamin Van Durme, and Raman
Arora. 2015. Multiview LSA: Representation learn-
ing via generalized CCA. In NAACL-HLT, pages
556–566, Denver, USA.

https://doi.org/https://doi.org/10.18653/v1/s16-1081
https://doi.org/https://doi.org/10.18653/v1/s16-1081
https://doi.org/https://doi.org/10.18653/v1/s16-1081
https://pdfs.semanticscholar.org/3fc9/7768dc0b36449ec377d6a4cad8827908d5b4.pdf
https://pdfs.semanticscholar.org/3fc9/7768dc0b36449ec377d6a4cad8827908d5b4.pdf
http://www.jmlr.org/papers/v3/bach02a
http://www.jmlr.org/papers/v3/bach02a
https://www.aclweb.org/anthology/C18-1140
https://www.aclweb.org/anthology/C18-1140
https://doi.org/https://doi.org/10.24963/ijcai.2018/552
https://doi.org/https://doi.org/10.24963/ijcai.2018/552
https://doi.org/https://doi.org/10.18653/v1/d15-1075
https://doi.org/https://doi.org/10.18653/v1/d15-1075
https://doi.org/https://doi.org/10.18653/v1/s17-2001
https://doi.org/https://doi.org/10.18653/v1/s17-2001
https://doi.org/https://doi.org/10.18653/v1/s17-2001
https://www.aclweb.org/anthology/D18-2029
https://www.isca-speech.org/archive/interspeech_2014/i14_2635
https://www.isca-speech.org/archive/interspeech_2014/i14_2635
https://doi.org/https://doi.org/10.18653/v1/n18-2031
https://doi.org/https://doi.org/10.18653/v1/n18-2031
https://doi.org/https://doi.org/10.18653/v1/n18-2031
https://www.aclweb.org/anthology/L18-1269
https://www.aclweb.org/anthology/L18-1269
https://www.aclweb.org/anthology/L18-1269
https://doi.org/https://doi.org/10.18653/v1/d17-1070
https://doi.org/https://doi.org/10.18653/v1/d17-1070
https://doi.org/https://doi.org/10.18653/v1/d17-1070
https://www.aclweb.org/anthology/W18-3012
https://www.aclweb.org/anthology/W18-3012
https://doi.org/10.1109/ACCESS.2019.2925006
https://doi.org/10.1109/ACCESS.2019.2925006
https://doi.org/https://doi.org/10.1162/neco.1997.9.8.1735
https://www.aclweb.org/anthology/D18-1176
https://www.aclweb.org/anthology/D18-1176
https://arxiv.org/pdf/1412.6980
https://arxiv.org/pdf/1412.6980
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://arxiv.org/pdf/1808.04334
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/d19-1173
https://doi.org/10.18653/v1/d19-1173
https://doi.org/10.18653/v1/d19-1173
https://doi.org/https://doi.org/10.3115/v1/n15-1058
https://doi.org/https://doi.org/10.3115/v1/n15-1058

7033

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In EMNLP-IJCNLP, Hong Kong, China.

Shuai Tang and Virginia R de Sa. 2019. Improving sen-
tence representations with multi-view frameworks.
In Interpretability and Robustness for Audio, Speech
and Language Workshop, Montreal, Canada.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In NeurIPS, pages 5998–6008, Long
Beach, USA.

John Wieting and Kevin Gimpel. 2018. ParaNMT-
50M: Pushing the limits of paraphrastic sentence em-
beddings with millions of machine translations. In
ACL, pages 451–462, Melbourne, Australia.

John Wieting and Douwe Kiela. 2019. No training
required: Exploring random encoders for sentence
classification. In ICLR, New Orleans, USA.

Wenpeng Yin and Hinrich Schütze. 2016. Learning
word meta-embeddings. In ACL, pages 1351–1360,
Berlin, Germany.

https://doi.org/10.18653/v1/d19-1410
https://doi.org/10.18653/v1/d19-1410
https://doi.org/10.18653/v1/d19-1410
https://arxiv.org/pdf/1805.07443
https://arxiv.org/pdf/1805.07443
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://www.aclweb.org/anthology/P18-1042
https://www.aclweb.org/anthology/P18-1042
https://www.aclweb.org/anthology/P18-1042
https://arxiv.org/abs/1901.10444
https://arxiv.org/abs/1901.10444
https://arxiv.org/abs/1901.10444
https://doi.org/https://doi.org/10.18653/v1/p16-1128
https://doi.org/https://doi.org/10.18653/v1/p16-1128

7034

single-source embeddings meta-embeddings

method: ParaNMT SBERT USE conc avg svd gcca ae
dimensionality: d = 600 d = 1024 d = 512 d = 2136 d = 1024 d = 1024 d = 1024 d = 1024

STS12

MSRpar 55.25/55.15 58.11/60.42 34.05/39.24 60.13/60.53 58.90/59.71 59.56/60.24 62.79/63.90 61.64/63.57
MSRvid 88.53/88.48 87.93/89.73 89.46/90.75 91.51/92.16 91.29/91.92 91.28/91.98 91.20/92.29 90.69/91.69
SMTeuroparl 53.15/59.31 59.63/62.40 49.00/62.08 58.99/64.02 60.16/64.73 57.03/62.17 56.40/61.23 55.13/60.14
OnWN 73.42/69.82 68.08/68.51 71.66/65.81 77.89/73.05 77.53/73.00 77.80/73.12 77.90/73.50 75.35/73.03
SMTnews 67.03/58.53 60.75/53.11 68.66/61.29 74.85/66.53 74.54/66.88 73.73/66.48 75.75/67.31 74.91/64.76

STS13

FNWN 53.01/54.44 57.06/57.22 48.07/49.34 64.11/64.91 63.46/64.26 63.28/63.49 62.74/63.54 63.99/64.61
OnWN 75.62/75.80 77.54/80.00 66.64/68.10 80.84/81.13 80.46/80.81 79.89/80.53 84.04/83.65 80.17/81.50
SMT 42.54/41.13 44.54/44.80 43.85/41.80 47.46/44.89 47.87/45.04 48.59/45.58 49.20/46.01 48.92/45.40
headlines 79.52/79.83 73.67/77.17 70.70/71.82 81.13/83.48 80.64/82.96 81.49/83.54 82.58/84.37 80.78/82.13

STS14

OnWN 82.22/83.20 81.51/82.99 74.61/76.01 85.08/ 85.83 85.12/85.84 84.23/85.17 87.34/87.27 84.24/85.09
deft-forum 60.01/59.49 57.66/60.45 50.12/49.43 67.57/66.84 67.09/66.19 66.84/66.20 68.40/67.26 67.22/66.82
deft-news 77.46/72.75 72.62/76.80 68.35/63.35 81.72/79.04 81.60/78.98 80.36/78.31 81.09/79.20 79.59/78.83
headlines 78.85/76.98 73.72/75.41 65.88/62.34 79.64/79.93 79.39/79.86 79.85/79.59 81.68/81.50 80.13/79.77
images 86.14/83.36 84.57/79.42 85.54/80.55 89.52/85.68 89.35/85.51 89.29/85.37 88.83/84.83 87.64/83.42
tweet-news 79.39/73.43 75.12/70.80 72.48/64.24 82.50/76.50 82.12/76.13 83.14/77.17 83.09/77.04 81.61/77.23

STS15

answers-forums 73.54/74.50 64.04/62.78 72.70/75.02 79.33/79.91 78.47/79.12 79.15/79.69 78.39/78.59 72.65/72.21
answers-stud. 77.06/77.87 79.12/80.14 60.99/63.32 81.01/82.10 80.15/81.45 81.02/82.14 80.86/82.18 83.03/83.56
belief 80.28/80.25 77.46/77.46 78.68/82.14 86.14/87.58 85.55/87.01 85.05/86.02 86.38/87.58 82.49/83.07
headlines 81.92/82.28 78.91/81.88 73.26/74.77 83.20/86.03 83.33/86.25 83.48/86.02 84.87/86.72 84.16/85.53
images 88.60/88.87 86.76/89.02 88.39/90.34 90.92/91.95 90.86/91.92 90.46/91.59 90.34/91.85 90.26/91.35

STS16

answer-answer 69.71/68.96 63.41/66.63 72.52/72.72 79.65/78.89 78.93/77.82 79.37/79.21 78.70/78.50 76.83/77.17
headlines 80.47/81.90 75.23/79.33 69.70/75.11 80.97/84.95 80.60/84.53 81.36/85.14 81.41/84.85 80.40/83.17
plagiarism 84.49/85.62 80.78/82.04 74.93/77.42 85.86/87.17 85.88/87.25 85.54/87.36 85.92/87.76 85.01/86.14
postediting 84.53/86.34 81.32/85.87 82.81/86.49 88.18/90.76 87.98/90.51 87.55/90.21 87.01/90.24 86.71/89.28
question-quest. 72.37/72.73 63.38/64.72 68.54/70.25 75.49/77.42 76.05/77.76 74.08/75.93 73.44/74.98 73.25/73.60

Table 4: Pearson’s r / Spearman’s ρ ×100 on individual sub-testsets of STS12–STS16. Boldface: best method in
row.

