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Abstract

We introduce S20RC,! a large corpus of
81.1M English-language academic papers
spanning many academic disciplines. The cor-
pus consists of rich metadata, paper abstracts,
resolved bibliographic references, as well as
structured full text for 8.1M open access pa-
pers. Full text is annotated with automatically-
detected inline mentions of citations, figures,
and tables, each linked to their correspond-
ing paper objects. In S20RC, we aggregate
papers from hundreds of academic publishers
and digital archives into a unified source, and
create the largest publicly-available collection
of machine-readable academic text to date. We
hope this resource will facilitate research and
development of tools and tasks for text mining
over academic text.

1 Introduction

Academic papers are an increasingly important
textual domain for natural language processing
(NLP) research. Aside from capturing valuable
knowledge from humankind’s collective research
efforts, academic papers exhibit many interest-
ing characteristics — thousands of words organized
into sections, objects such as tables, figures and
equations, frequent inline references to these ob-
jects, footnotes, other papers, and more.

Different types of resources have been used
to support research over academic papers. Cita-
tion graphs like AMiner’s Open Academic Graph
(Tang et al., 2008), the Microsoft Academic Graph
(MAG) (Shen et al., 2018), and the Semantic
Scholar literature graph (Ammar et al., 2018),
have had widespread application in bibliomet-
rics, science-of-science, information retrieval, and
network analysis. Digital archives like arXiv,?
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Figure 1: Inline citations and references to figures and
tables are annotated in S20ORC’s structured full text.
Citations are linked to bibliography entries, which are
linked to other papers in S20RC. Figure and table ref-
erences are linked to their captions.

PubMed Central,® CiteSeerX (Giles et al., 1998),*
and the ACL Anthology (Bird et al., 2008),’
are popular resources for deriving large text cor-
pora for summarization and language modeling or,
with further annotation, development of datasets
for tasks like entity extraction, text classifica-
tion, parsing, and discourse analysis. We focus
on bibliometrically-enhanced derivations of these
corpora, such as the ACL Anthology Network
(AAN) (Radev et al., 2009)° derived from the ACL
Anthology, RefSeer (Huang et al., 2015) derived
from CiteSeerX, and Saier and Firber (2019) de-
rived from arXiv, which combine useful aspects
of citation graphs and raw text corpora. These re-
sources provide citation mentions linked to paper
identifiers in their corresponding digital archives,
such as the ACL Anthology and CiteSeerX, or to
nodes in citation graphs such as MAG, enabling
new forms of cross-paper discourse analysis (e.g.,
studying how or why papers are related).

‘https://www.ncbi.nlm.nih.gov/pmc
*https://citeseerx.ist.psu.edu
Shttps://www.aclweb.org/anthology
*http://aan.how/
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Papers w/ Citation Linked to Academic
Corpus tables / figures / Lo
body text contexts . graph disciplines
equations
S20RC (PDF-parse) 8.1M full text yes S20RC (full) multi
S20RC (LATEX-parse) 1.5M full text yes S20RC (full) physics, math, CS
PubMed Central (OA) 2.6M full text yes PubMed bio, med
AAN (Radev et al., 2009) 25k full text no ACL Anthology  comp ling
Saier and Firber (201 9)* 1.0M snippets no MAG physics, math, CS
RefSeer (Huang et al., 2015) 1.0M snippets no CiteSeerX multi

Table 1: A comparison of S20RC with other publicly-available academic text corpora. Of the other corpora:
PubMed Central (OA) links to PubMed, which contains 30M papers at the time of writing. AAN links to the
ACL Anthology (which contained 25k papers at the time of dataset construction, and 54k papers at the time of
writing). Saier and Firber (2019) is derived from arXiv and links to MAG (which contained 213M papers and
other non-paper documents at the time of dataset construction, and 226M nodes at the time of writing). RefSeer
links to CiteSeerX (which contained 1M papers at the time of dataset construction, and 6M papers at the time of
writing). S20RC contains three times more full text papers than PubMed Central (OA), the next largest corpus
with bibliometric enhancements, while covering a more diverse set of academic disciplines. Citations in S20RC
are linked to the full set of S20RC papers, 81.1M paper nodes derived from Semantic Scholar. In addition,
the LATEX subset of S20ORC captures additional structure omitted by Saier and Firber (2019), who also parse

LATEX sources from arXiv.

fSaier and Férber (2020) is an update to this work which now includes full text. It is released concurrently with this work.

Yet, existing corpora are not without their limi-
tations. Some cover a small number of papers (e.g.
AAN), are domain-specific (e.g. AAN, PubMed
Central, Saier and Fiérber (2019)), or may not pro-
vide usable full text (e.g. Saier and Férber (2019)
and RefSeer). To address these issues, we intro-
duce S20RC,’ the Semantic Scholar® Open Re-
search Corpus, a large publicly-available collec-
tion of 81.1M academic papers covering dozens
of academic disciplines. Each paper is associated
with metadata and abstracts aggregated from hun-
dreds of trusted sources such as academic publish-
ers and literature archives like PubMed and arXiv.

Notably, we release structured, machine-
readable full text extracted from PDFs for 8§.1M
papers which we’ve identified as having open ac-
cess status. S20RC full text preserves meaningful
structure, e.g., paragraph breaks, section headers,
inline citation mentions, references to tables and
figures, and resolved citation links to other papers.
Additionally, we provide 1.5M full text LATEX
parses from which we have extracted, in addition
to citations and references, the source text of ta-
bles and mathematical formulas. As shown in Ta-
ble 1, S20ORC provides substantially more struc-
tured full text papers and covers a more diverse set
of academic disciplines than other resources.

"pronounced “stork”

8The papers included in S20RC are a curated subset of
the papers in the Semantic Scholar literature graph (Ammar
et al., 2018) that focuses only on English-language papers
with abstracts or full text available. See §2.5 for details on
filtering through Semantic Scholar papers.

In this paper, we describe the construction of
S20RC (§2). We provide summary statistics of
the corpus (§3) and evaluate the data quality (§4).
We then evaluate a BERT model pretrained on
S20RC (§5), and discuss potential applications to
a variety of NLP and analysis tasks over academic
text (§6). Finally, we compare S2ORC with other
publicly-available academic text corpora (§7).

2 Constructing the corpus

S20RC is constructed using data from the Se-
mantic Scholar literature corpus (Ammar et al.,
2018). Papers in Semantic Scholar are derived
from numerous sources: obtained directly from
publishers, from resources such as MAG, from
various archives such as arXiv or PubMed, or
crawled from the open Internet. Semantic Scholar
clusters these papers based on title similarity and
DOI overlap, resulting in an initial set of approxi-
mately 200M paper clusters.

To construct S20RC, we must overcome chal-
lenges in (i) paper metadata aggregation, (ii) iden-
tifying open access publications, and (iii) cluster-
ing papers, in addition to identifying, extracting,
and cleaning the full text and bibliometric annota-
tions associated with each paper. The pipeline for
creating S20RC is:

1) Process PDFs and LATEX sources to derive
metadata, clean full text, inline citations and
references, and bibliography entries,

2) Select the best metadata and full text parses
for each paper cluster,
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3) Filter paper clusters with insufficient meta-
data or content, and
4) Resolve bibliography links between paper
clusters in the corpus.
Details for these steps are provided below. See
Appendix §A for definitions of terminology. The
output of this pipeline is visualized in Figure 1.

2.1 Processing PDFs

We process PDFs from the Semantic Scholar cor-
pus using SCIENCEPARSE v3.0.0° and GROBID
v0.5.5' (Lopez, 2009). Our processing pipeline
is described below.

Selecting PDFs We remove PDFs which are less
likely to be academic papers. SCIENCEPARSE and
GROBID are not optimized for processing non-
paper academic documents such as dissertations,
reports, slides, etc., and this filtering step is neces-
sary to increase output data quality. See Appendix
§B for filter details. There are around 31.3M PDFs
associated with approximately 200M initial paper
clusters, and 30.5M PDFs are selected for process-
ing based on these filtering criteria.

Extracting structured data from PDFs We use
SCIENCEPARSE to extract title and authors from
each PDF.!! We then use GROBID to process each
PDF. From the XML output of GROBID, we ex-
tract (i) metadata such as title, authors, and ab-
stract, (ii) paragraphs from the body text orga-
nized under section headings, (iii) figure and ta-
ble captions, (iv) equations, table content, headers,
and footers, which we remove from the body text,
(v) inline citations in the abstract and body text,
(vi) parsed bibliography entries with title, authors,
year, and venue identified, and (vi) links between
inline citation mentions and their corresponding
bibliography entries.

Postprocessing GROBID output We postpro-
cess GROBID output using regular expressions to
classify the parenthetical citation style of a pa-
per as BRACKET (e.g. [2]), NAME-YEAR (e.g.
ABC, 2019), or OTHER (superscripts and other
mixed styles). We focus on addressing two types
of common errors in GROBID’s inline citation ex-
tractions: (i) false positives resulting from super-
scripts or equation references being recognized as
‘https://github.com/allenai/science—
parse
Ohttps://github.com/kermitt2/grobid

"Qur evaluations suggest SCIENCEPARSE outperforms
GROBID for title and author extraction.

inline citations in papers with BRACKET-style ci-
tations, and (ii) false negatives resulting from an
inability to expand bracket citation ranges (e.g.
“[3]-[5]” should be expanded to “[3], [4], [5]” be-
fore linking). False positives are detected using
regular expressions and removed from GROBID
output. Bracket citation ranges are manually ex-
panded and linked to their corresponding bibliog-
raphy entries. The resulting parses are expressed
in JSON format.!?

2.2 Processing LATEX source

LATEX document source is available for a major-
ity of arXiv submissions, and where available, are
used to construct a full text parse. We retrieve
body text, section headers, figure/table captions,
table representations, equations, and inline cita-
tions and references directly from LATEX source.
Inspired by Saier and Fiarber (2019), we first con-
vert LATEX source into XML documents and then
extract structured information from the XML.

Due to direct access to source, the accuracy of
citation span, reference, caption, section header,
and equation detection is near-perfect. We process
1.5M papers from LATEX source derived from
arXiv, all of which are included as part of S2ORC.
Surprisingly, due to the diversity of ways in which
authors define metadata in LATEX, the quality
of metadata extracted from LATEX documents is
worse than those extracted from PDF. Therefore,
we do not use LATEX-derived metadata for paper
clustering or metadata selection.

2.3 Selecting canonical metadata

Canonical values for title, authors and other meta-
data fields are selected from among the papers in a
cluster. First, if a cluster contains multiple PDFs,
we select one to be canonical. This can occur, for
example, in a cluster containing an arXiv preprint
and its eventual camera-ready version. We pref-
erentially select PDFs from open access sources
and break ties by prioritizing PDFs for which there
exist richer publisher-provided metadata (e.g. ab-
stract, year, venue, DOI). If the selected PDF is
associated with publisher-provided metadata, we
select those publisher-provided metadata fields to
be canonical.

In cases where publisher-provided metadata
is incomplete, we use majority voting to select

The S20RC data format is described at https://
github.com/allenai/s2orc
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canonical metadata values. We break ties by min-
imizing the total number of sources from which
we select metadata (e.g., if IEEE provides title,
authors and abstract, DBLP provides title and au-
thors, and arXiv provides title and abstract, we pri-
oritize selecting IEEE over the union of DBLP and
arXiv). S20RC metadata fields include title, au-
thor, year, venue, journal, abstract, and identifiers
(DOI, PubMed, PubMed Central (PMC), arXiv,
and ACL Anthology).

In cases where the title and authors are not pro-
vided by any publishers, we derive the values for
these fields from the parsed PDF, prioritizing SCI-
ENCEPARSE over GROBID. We further comment
on paper clustering as it pertains to metadata se-
lection in Appendix §C.

2.4 Assembling the corpus

We construct the final corpus by assembling clus-
tered paper metadata with GROBID and LATEX
parse objects. We associate the GROBID parse
with the S20RC paper object if a valid GROBID
parse is produced from the PDF, and the PDF is
open access. Open access status is assigned if
a paper is derived from arXiv, ACL Anthology,
PubMed Central (OA), and/or associated with an
open-access DOI in the Unpaywall database.!® If
the PDF is not open access, we only include the
bibliography from the GROBID parse in S20RC.
If arXiv LATEX source is available for the paper
cluster, we also associate the LATEX parse with
the S20ORC paper object.

2.5 Filtering paper clusters

We further filter paper clusters to remove papers
with (i) no title, (ii) no authors, (iii) fewer than
100 characters of abstract and body text, and (iv)
where English is not the primary language. The
first three filters remove papers that provide little
value for bibliometric-based or text-based analy-
ses. The English language filter'# reduces GRo-
BID parsing errors. All filters are applied in series.

Subsequently, 95.5M paper clusters are filtered
out based on the aforementioned criteria and re-
moved from the corpus. The distribution of fil-
tered papers is given in Table 2. We note that
a large number of paper clusters are filtered out;
80.0M of these filtered clusters have no associated
publisher-provided abstract or associated PDF and

3Unpaywall 2019-04-19 data dump
“We use the c1d2 tool for language detection with a
threshold of 0.9 over the English language score.

do not provide significant value to our dataset in
their current state. Although these papers that lack
text may be useful as cite-able nodes in S20RC,
they are generally of lower quality and are filtered
out of the corpus to improve corpus quality.

Filter Number of papers
No title 20k

No authors 0.3M

< 100 chars of text 80.0M

Not English 15.2M

Table 2: Post-processing data quality filters for papers

2.6 Linking bibliographies to papers

Each bibliography entry in both GROBID and LA-
TEX parses are linked to the most similar papers
in the corpus. For linking, we score each bibli-
ography entry and paper cluster pair using a sim-
ilarity score computed between their titles. Each
title is first normalized (i.e. white spaces stripped,
lower-cased, special characters removed) and rep-
resented by its character 3-grams. The similarity
score Sy is computed as the harmonic mean be-
tween a Jaccard index and a containment metric:

2x JxC
J+C
where the Jaccard index J and containment metric

C are computed from the n-grams of the two titles
N7 and N3 as:

ey

Stitle =

B |N1 ON2|

J_i
|N1UN2|

_ ‘NlﬂN2|
min (| N[, [ N2|)

For each bibliography entry, the bibliography-
paper pair with the highest similarity score above
0.8 is output as the correct link. Otherwise, the
bibliography entry remains unlinked. We perform
an evaluation of linking performance in §4.

3 The S20RC dataset

The resulting corpus consists of 81.1M pa-
pers. Our publisher-provided abstract coverage is
90.4%, or 73.4M papers. Our PDF coverage is
35.6%, or 28.9M papers. These PDFs are pro-
cessed using the pipeline discussed in §2.1. The
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81.1M

28.9M (35.6%)
27.6M (34.1%)
8.1IM (10.0%)

Total papers

Papers w/ PDF
Papers w/ bibliographies
Papers w/ GROBID full text

Papers w/ LaTeX full text 1.5M (1.8%)
Papers w/ publisher abstract  73.4M (90.4%)
Papers w/ DOIs 52.2M (64.3%)
Papers w/ Pubmed IDs 21.5M (26.5%)
Papers w/ PMC IDs 4.7TM (5.8%)
Papers w/ ArXiv IDs 1.7M (2.0%)
Papers w/ ACL IDs 42k (0.1%)

Table 3: Statistics on paper provenance. We note that
categories are not mutually exclusive and do not sum to
100%. All papers in S20RC have either a publisher-
provided abstract or an associated PDF from which we
derive full text and/or bibliography entries, or both.

Statistic GROBID LATEX
Paragraphs (abstract) 1.1 -
Paragraphs (body) 9.9 93.3*
Inline cite spans (abstract) 0.7 -

Inline cite spans (body) 45.2 46.8
Bibliography entries 27.6 21.9
Linked bib. entries 19.3 6.8

Table 4: Extraction and linking statistics over PDF and
LATEX parses. Reported values are averaged over all
open access papers, which consist of 8.1M GROBID-
parsed PDFs and 1.5M parsed LATEX sources.

*LATEX preserves line breaks rather than paragraph breaks.

TThe lower number of linked bibliography entries in LATEX
parses is due to large numbers of papers (mostly in the field
of physics) for which the bibliography entries are formatted
without paper titles. Our linking algorithm strongly depends
on titles and fails to link these entries.

vast majority of these PDFs are successfully pro-
cessed using GROBID, and we extract bibliogra-
phy entries for 27.6M of the 28.9M PDFs. We
identify 8.1M of the 28.9M PDFs as open access
(§2.4), and we provide full text for all papers in
this open access subset. For the 1.5M papers for
which LATEX source is available through arXiv,
we further obtain and provide LATEX parses
(§2.2). Using these extracted bibliographies, we
resolve a total 380.5M citation links between pa-
pers (§2.6), 156.5M of which can be tied back to
their inline citation mentions in the full text. See
Table 3 for more provenance statistics.

We provide statistics for the GROBID and LA-
TEX full text parses and bibliography linking in

Distribution of papers by field of study

Medicine °
Biology L]
Physics °

Mathematics .
Unclassified

CompSci °

Chemistry °
Psychology °
Engineering

MatSci °

Economics °

Geology e

Business e

Sociology e
PoliSci e

Geography e
EnvSci e
History ®

Arte
Philosophy ®

0 5 10 15 20 25
Percent

Figure 2: Distribution of papers by Microsoft Aca-
demic field of study.

Table 4. On average, LATEX parses contain many
more “paragraphs” of body text, because LATEX
source files preserve line breaks rather than para-
graph breaks. We speculate that differences in bib-
liography entry and linking counts between the
GROBID and LATEX parses are due to a com-
bination of: (i) challenges in LATEX bibliogra-
phy expansion and parsing, and (ii) differences in
bibliography formatting in some math and physics
venues (where bibliography entries do not include
paper titles, which we depend on for bibliography
linking).

The distribution of academic disciplines in
S20RC is given in Figure 2 using Microsoft Aca-
demic fields of study. Not all papers in S20RC
can be found in Microsoft Academic — those not
found are denoted as Unclassified. Approximately
677k papers have more than one primary Mi-
crosoft Academic field of study; Figure 2 repre-
sents only the top field of study for each paper.

4 Evaluation

To evaluate the quality of our metadata selection,
we randomly sample 500 paper clusters, restrict-
ing to those with PDFs. Within each sampled clus-
ter, we determine whether the canonical title and
authors match the title and authors in the selected
canonical PDF.

Inline citation detection and bibliography pars-
ing are dependent on GROBID (Lopez, 2009). Ah-
mad and Afzal (2018) evaluate GROBID for de-
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Domain Dataset Reference Task SCIBERT S20RC-
SCIBERT
BC5CDR Li et al. (2016) NER 90.01 90.41 £ 0.06
JNLPBA Collier and Kim (2004) NER 77.28 77.70 + 0.25
NCBI-disease Dogan et al. (2014) NER 88.57 88.70 = 0.52
Biomed EBM-NLP Nye et al. (2018) PICO 72.28 72.35 £ 0.95
GENIA Kim et al. (2003) DEP (LAS) 90.43 90.80 + 0.19
GENIA Kim et al. (2003) DEP (UAS) 91.99 92.31 +0.18
ChemProt Krallinger et al. (2017) REL 83.64 84.59 +£0.93
SciERC Luan et al. (2018) NER 67.57 68.93 + 0.19
CS SciERC Luan et al. (2018) REL 79.97 81.77 £ 1.64
ACL-ARC Jurgens et al. (2018) CLS 70.98 68.45 +2.47
Biomed & CS  SciCite Cohan et al. (2019) CLS 85.49 84.76 + 0.37
Multi-domain ~ PaperField Beltagy et al. (2019) CLS 65.71 65.99 + 0.08

Table 5: S20ORC-SCIBERT test results are comparable with reported SCIBERT test results on the set of tasks
and datasets from Beltagy et al. (2019), to which we refer the reader for descriptions. Reported statistics are span-
level F1 for NER, token-level F1 for PICO, dependency parsing (DEP), and macro-F1 for relation (REL) and text
(CLS) classification. We report micro-F1 for ChemProt. All S20ORC-SCIBERT results are the mean =+ standard
deviation of 5 runs with different random seeds. Beltagy et al. (2019) do not report standard deviation or number

of runs.

tecting inline citations using a corpus of 5k Cite-
Seer papers, and found GROBID to have an FI-
score of 0.89 on this task. Tkaczyk et al. (2018) re-
port GROBID as the best among 10 out-of-the-box
tools for parsing bibliographies, also achieving an
F1 of 0.89 in an evaluation corpus of 9.5k papers.
We perform an evaluation over 200 randomly sam-
pled papers from S20RC and found comparable
F1-scores for GROBID performance on both tasks.

For bibliography linking, we randomly sample
S20RC papers (500 GROBID PDF parses and 100
LATEX parses) and select one linked bibliography
entry from each sampled paper (while avoiding se-
lecting multiple entries linked to the same paper).
We determine whether the title and authors in the
bibliography entry agree with the title and authors
of the linked paper.

We present these evaluation results in Table 6
and detail valuation criteria in Appendix §D.

Evaluated task Title Authors
Paper clustering 0.93 0.89
Bib. linking (GROBID) 1.00 0.96
Bib. linking (LATEX)  1.00 0.92

Table 6: Accuracy of paper clustering and bibliography
linking for titles and authors in sampled evaluation sets.

5 Pretraining BERT on S20RC

To demonstrate the suitability of S20ORC for lan-
guage model pretraining, we train BERT-Base
(Devlin et al., 2019) on the parsed full text
of S20RC and show that the resulting model
(S20RC-SCIBERT) performs similarly to SCI-
BERT (Beltagy et al., 2019) on a diverse suite of
scientific NLP tasks and datasets.

While SCIBERT is a BERT-Base model also
trained on multiple domains of scientific text, key
differences in its pretraining corpus and vocabu-
lary and those used for S20RC-SCIBERT are:

* Domain: Beltagy et al. (2019) report a pre-
training corpus consisting of 82% biomedi-
cal and 18% computer science papers. Our
S20RC pretraining corpus consists of a
more balanced distribution of papers across
diverse academic disciplines (see Figure 2),
such that biomedical (42.7%) and computer
science (7.2%) papers only comprise half the
corpus.

* Preprocessing: S2O0ORC identifies figure
captions, table text and captions, headers,
footers, and footnotes. We exclude these
from the pretraining corpus. We tokenize and
sentencize the text using scispaCy (Neumann
et al., 2019). We also use heuristic filters to
remove ill-formed paragraphs (such as those
containing too many symbols).

* Size: The resulting S20RC pretraining cor-
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pus contains 16.4B tokens, nearly five times
larger than the corpus for SCIBERT.

* Vocab: Following Beltagy et al. (2019),
we construct a cased WordPiece (Wu et al.,
2016) vocabulary of size 31k using 15% of
the S20RC pretraining corpus. The Jaccard
index between the S20RC-SCIBERT and
SCIBERT vocabularies is 0.536.

We follow a similar setup to Beltagy et al.
(2019) for both pretraining and fine-tuning
S20RC-ScIBERT. Like SCIBERT, S20RC-
SCIBERT is pretrained from scratch using the
original BERT code!® and default BERT-Base
configurations on a single TPU v3-8 for one week.
Also like SCIBERT, S20RC-SCIBERT is fine-
tuned on all tasks by optimizing a cross entropy
loss using Adam (Kingma and Ba, 2014), a linear
learning rate decay with 10% warm-up, batch size
of 32, and dropout of 0.1.

We search over an equal-sized grid of hyperpa-
rameters as Beltagy et al. (2019). We fine-tune for
1 to 4 epochs with a maximum learning rate of
le-5, 2e-5, 3e-5, or Se-5. For each task, we select
the optimal combination of these two hyperparam-
eters using the development set and report the cor-
responding test set results. For details, we refer
the reader to SCIBERT code,'® which we use for
all experiments.

The results in Table 5 show that S2ORC-
SCIBERT outperforms SCIBERT on many tasks
despite including a large percentage of data out-
side of the biomedical and computer science do-
mains. As the pretraining corpus for SCIBERT
is not publicly-available, S20RC can serve as a
large pretraining corpus for evaluating and com-
paring pretraining approaches on academic text.
We also release S20RC-SCIBERT to serve as a
baseline for research.

6 Applications of S20RC

S20RC can be used for many NLP and analysis
tasks over academic text. We give a summary of
potential applications below.

The combination of structured full text anno-
tated with linked inline citations makes S2ORC
well-suited for a variety of citation-related text-
based tasks. Without any additional supervision,
S20RC can be used directly for both inline (He

Bhttps://github.com/google-research/
bert
®https://github.com/allenai/scibert

et al., 2010; Duma and Klein, 2014; Jeong et al.,
2019) and document-level (Yu et al., 2012; Liu
et al.,, 2015; Bhagavatula et al., 2018) citation
recommendation. Among document-level recom-
menders, S20RC is well-suited to the setting of
Liu et al. (2015), who use inline citation contexts
to filter document-level recommendations.

Embeddings for arXiv papers (6 ML categories)

@ Machine Learning
Neural and Evolutionary Computing e Computer Vision and Pattern Recognition

e Computation and Language

® Learning o Artificial Intelligence

Figure 3: Word2vec embeddings associated with 20k
papers in six Al-related arXiv categories visualized us-
ing t-SNE (van der Maaten and Hinton, 2008). Exam-
ple papers from two randomly selected sub-regions A
and B are given in Table 7.

Region A
cs.LG

“On Unifying Deep Generative Models”

statt ML “Learning Disentangled Representations
with Semi-Supervised Deep Generative
Models”

cs.LG “Denoising Criterion for Variational Auto-
Encoding Framework”

cs.CV “Variational methods for conditional multi-
modal deep learning”

Region B

cs.CL “TransA: An Adaptive Approach for
Knowledge Graph Embedding”

cs.Al “TorusE: Knowledge Graph Embedding on
a Lie Group”

cs.CV “Image-embodied Knowledge Representa-
tion Learning”

stat ML “Neural Embeddings of Graphs in Hyper-

bolic Space”

Table 7: Sampled papers in clusters from t-SNE em-
bedding space in Figure 3. Region A consists of papers
related to deep generative models; region B consists of
papers concerned with graph representation learning.

Other tasks that leverage citation contexts in-
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clude classifying citation intent (Teufel et al.,
2006; Jurgens et al., 2018; Cohan et al., 2019),
identifying citation sentiment (Athar and Teufel,
2012), identifying meaningful citations (Valen-
zuelaet al., 2015), extracting key phrases (Caragea
et al,, 2014), and citation context-based paper
summarization (Teufel et al., 2006; Qazvinian and
Radev, 2008; Cohan and Goharian, 2015; Mitrovié
and Miiller, 2015). The models in these pa-
pers require labeled citation contexts for train-
ing. S20RC could potentially benefit task per-
formance without additional annotation, for exam-
ple, by pretraining language models on S20RC
citation contexts before fine-tuning to these tasks.
Cohan et al. (2019) find that long citation contexts
(beyond sentence boundary) are important for
tasks like summarization; the wider citation con-
texts available in S20ORC could be used to aug-
ment existing datasets for document-level tasks.

Citation contexts can also be used for the
more general tasks of identifying similar papers
(Kanakia et al., 2019; Eto, 2019; Haruna et al.,
2018; Small, 1973) or bibliometric analysis (Ding
et al.,, 2014; Trujillo and Long, 2018; Asatani
et al., 2018). Towards these tasks, the citation con-
texts in S20RC can provide insight into how and
why papers are cited. We illustrate this by fol-
lowing Berger et al. (2016) in training a word2vec
skip-gram model (Mikolov et al., 2013) using full
text citation contexts in S20ORC, where each in-
line citation span is replaced with its linked pa-
per identifier. When training over this modified
text, the word2vec model learns embeddings cor-
responding to each unique paper identifier, which
can be leveraged as paper embeddings. The re-
sulting embeddings shown in Figure 3 and Table 7
form clusters corresponding closely to arXiv Ma-
chine Learning categories. Upon inspection, pa-
pers of different categories in the same embedding
sub-region share research themes (see Table 7), in-
dicating that these paper embeddings trained from
citation contexts capture coherent topic similarity
and relatedness. These paper embeddings can be
used to identify similar papers, using the similar-
ity between two papers’ citing contexts as a proxy
for paper similarity.

The LATEX subset of S20RC also provides
unique opportunities for research. In addition to
citations and references, we also extract and parse
tables from LATEX source into a structured for-
mat. There is an opportunity to use these ta-

bles for corpus-level results extraction and aggre-
gation. The LATEX subset also has fine-grained
extraction and labeling of mathematical formulas,
which can be used to understand proof construc-
tion, or to assist in symbol co-reference resolution.

7 Related work

The ACL Anthology Network (AAN) (Radev
et al., 2009) is a bibliometric-enhanced corpus
covering papers in the field of computational lin-
guistics. It is built from the ACL Anthology
(Bird et al., 2008) and consists of 24.6k papers
manually augmented with citation information.
The PubMed Central Open Access corpus is a
large corpus of 2.6M papers in the biomedical
domain with citations linked to PubMed identi-
fiers.!” CiteSeerX (Giles et al., 1998), consists
of papers collected primarily via web crawl, with-
out integrating metadata provided by sources out-
side of the PDF. Although citation contexts are
no longer available through CiteSeerX, the Ref-
Seer dataset (Huang et al., 2015)'8 is a dataset of
short citation context snippets derived from 1.0M
papers from CiteSeerX. More recently, Saier and
Férber (2019) introduce a corpus built using 1.0M
arXiv publications. They use LATEX source to
extract text, citation spans and bibliography en-
tries, which are linked to papers in the Microsoft
Academic Graph. The citation context they pro-
vide are extracted snippets and no bibliography
parses are provided. An updated version of this
dataset (Saier and Farber, 2020) released concur-
rently with this work now includes full text.

Compared with these resources, S20RC rep-
resents a significantly larger dataset of linked pa-
pers covering broad domains of science by lever-
aging PDF parsing in addition to LATEX source.
S20RC also provides clean full text for text min-
ing and NLP needs with additional enhancements
such as annotations of table and figure references
and captions. S20RC’s wealth of metadata and
structured text allows it to be flexibly adapted to a
variety of downstream tasks.

8 Conclusion

We introduce S20RC, the largest publicly-
available corpus of English-language academic
papers covering dozens of academic disciplines.

"https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/
Bhttps://psu.app.box.com/v/refseer
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S20RC consists of 81.1M papers, 380.5M re-
solved citation links, and structured full text from
8.1M open-access PDFs and 1.5M LATEX source
files. We aggregate metadata and abstracts from
hundreds of trusted sources. Full text is aug-
mented with sections, citation mentions, and ref-
erences to tables and figures. We demonstrate that
S20RC can be used effectively for downstream
NLP tasks in academic paper analysis.

The pipeline for creating S2ORC was used
to construct the CORD-19 corpus (Wang et al.,
2020), which saw fervent adoption as the
canonical resource for COVID-19 text mining.
CORD-19 is aimed at assisting biomedical ex-
perts and policy makers process large amounts
of COVID-19 literature in the search for effec-
tive treatments and management policies. With
over 75K dataset downloads, dozens of search and
question-answering systems, and hundreds of par-
ticipating teams across two shared tasks'® in the
first month of its release, there is little doubt of
the resource’s impact. Our hope with the release
of S20RC is to ensure such text mining resources
are available to researchers even beyond periods
of global crisis.
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A Background & Terminology

In this work, we distinguish between bibliography
entries and inline citations. A bibliography en-
try is an item in a paper’s bibliography that refers
to another paper. It is represented in a structured
format that can be used for paper-identifying fea-
tures such as title, authors, year, and venue or jour-
nal, and for journal articles, the volume, issue,
and pages. Also commonly represented are unique
document identifiers such as the Document Object
Identifier (DOI), arXiv identifier, or PubMed iden-
tifier. Common formats for bibliography entries
are MLA, APA, Vancouver-, and Chicago- style,
among others, which are different ways of repre-
senting these various features for document iden-
tification.

There is often variation in the representation
of certain fields. For example, Authors can in-
clude the first names of each author or only their
first initials. In many academic disciplines, jour-
nal publications are the norm, whereas confer-
ence proceedings dominate in fields such as Com-
puter Science; conference proceedings tend to lack
journal-related features such as Volume, Issue, and
Pages. Bibliography entry demarcation also varies
between different formats. In some cases, each en-
try is preceded by a citation marker (e.g. “[1]” or
“[ABC2019]”) that is used throughout the text of
the paper to denote inline citations.

An inline citation is a mention span within the
paper’s abstract or body text that refers to one of
the entries in its bibliography.

“ABC (2019) present model 1, which

In this example, the narrative inline citation
ABC (2019) appears as a noun phrase in the
sentence while the parenthetical inline citation
(XYZ, 2019) is inserted into the sentence as an
aside. A sentence remains grammatically correct
when parenthetical citations are removed. Other
styles of parenthetical citations include, but are not
limited to, BRACKET-style numbers (e.g. “[1, 3-
5]”) and OTHER styles such as superscripts (e.g.
“1,2”y both of which refer to numbered entries
in the bibliography. Bibliography entries with-
out numbered entries or citation markers are typi-
cally referenced inline using NAME-YEAR format

as ABC (2019) or (XYZ, 2019) in the example

Additionally, an inline reference is a span in a
paper that refers to another part of the paper, for
example, references to figures, tables, equations,
proofs, sections, or appendices. These often take
on the form of:

“In Figure 3, we show the relationship

between A and B.”

where Figure 3 refers to a plot displayed on a sep-
arate page. These inline references can be im-
portant for understanding the relationship between

text and objects within the paper.

B PDF filters

Prior to running GROBID, we filter out PDFs that
(i) produce an error when processed using the
Python library PyPDF2,%° (ii) have greater than 50
pages (more likely to be a dissertation or report),
(iii) have page widths greater than page heights
(more likely to be slides), and (iv) those which
fail to be extracted using pdfalto, the variant of
pdftoxml used by GROBID.

Numbers of PDFs removed by these filters are
given in Table 8.

Filter Number of PDFs
PyPDF2 error 0.54M
Over 50 pages 2.2TM
Page width > height 0.28M
PDFAlto error 0.21M

Table 8: PDFs filtered out before GROBID processing

C The paper clustering problem

In academic fields in which preprint publishing is
common (e.g. arXiv), the notion of a “paper” is
somewhat ambiguous. For example, if a published
paper differs from its arXiv preprint (as it often
does), are the two documents considered separate
papers for the purposes of citation? What about
different arXiv preprint drafts tagged as different
versions but under the same arXiv identifier?

In this work, each “paper” of interest is actu-
ally a collection (or cluster) of highly-similar (but
not necessarily identical) documents. These paper
clusters, provided by Semantic Scholar, are con-
structed to reflect how authors tend to view their

PUsed to determine PDF page number and page dimen-
sions
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own papers; for example, most authors would con-
sider their arXiv preprint and its associated pub-
lished version to be the same “paper”. For practi-
cal concerns in constructing S20RC, we further
require that one document within the cluster be
the canonical document used to represent the pa-
per cluster.

There are issues with defining a paper to be a
collection of documents. For example, suppose a
paper cluster contains both an arXiv preprint and
a peer-reviewed draft. And suppose another pa-
per cites the arXiv preprint critiquing content that
has been updated in the peer-reviewed draft. If the
peer-reviewed draft is chosen as the canonical rep-
resentation of the paper cluster, then the citation
context would not accurately capture the rationale
of that reference. While worth noting, we believe
such cases are rare and do not affect the vast ma-
jority of citation contexts.

D S20RC evaluation criteria

Paper cluster quality For each paper cluster,
we compare the selected canonical Title and Au-
thors fields with the title and authors of the se-
lected canonical PDF. The 7itle field is labeled cor-
rect if it exactly matches the title seen on the PDF,
with some allowance for different capitalization
and minor differences in special character repre-
sentation (e.g. “y” versus “gamma”) and ignoring
whitespace. The Authors field is labeled correct
if all authors on the PDF are presented in the cor-
rect order, with some allowance for variation in the
surface form. This is to avoid penalizing publisher
metadata for providing a first initial (instead of the
first name) or omitting middle names or titles (e.g.
“Dr.”, “PhD”).

Paper-Bibliography linking For each paper-
bibliography pair, we compare the selected canon-
ical Title and Authors fields in the structured bib-
liography entry to the selected canonical 7itle and
Authors fields of the linked paper cluster. The Ti-
tle fields are labeled as a match under the same
criteria described above for matching paper clus-
ter Title fields and PDF titles. The Authors fields
are labeled as a match if there is substantial over-
lap in the names of the authors. For example, if
authors A, B and C are in the bibliography entry
and the linked paper cluster has authors A and B,
then this is still considered a match. We note that
in our evaluation, differences in the two sets of au-
thor names primarily stems from incorrectly writ-

ten bibliography entries or mistakes in publisher-
provided metadata.

E Training corpus sizes for other
language models

Language model

ELMo
(Peters et al., 2018a)

Training data
1BW (800M)

Wikipedia (1.9B)
WMT 2008-2012 (3.6B)

BERT BooksCorpus (800M)
(Devlin et al., 2019) Wikipedia (2.5B)
ROBERTA BooksCorpus (800M)

(Liu et al., 2019b) CC-News (~3.8B)
OpenWebText (~1.9B)
Stories (~1.6B)

Web Text Corpus (~2.8B)

GPT2
(Radford et al., 2019)

Table 9: Reported and estimated (several papers report
corpus size in terms of bytes) token counts of training
data used to train language models.

We estimate that all of S20RC consists of
approximately 25B tokens of full body text and
15B tokens of abstract text. As demonstrated
for S20RC-SCIBERT pretraining, aggressively-
cleaned body text from the PDF-parsed subset of
S20RC still yields approximately 16.5B tokens.
The size of S20RC makes it more than suffi-
cient for pretraining large language models such
as ELMo, BERT, ROBERTA, GPT2, and oth-
ers, whose reported training data sizes are given in
Table 9 for comparison.

Contextual Numeric Surface Forms, Layer 9

B Y N 1
4 ,':g_' '."g‘ 3
1&'*“ Y
other o year « time decimal
numeric_citation o word pdf_reference « latex

Figure 4: Visualization of contextual representations
from layer 9 of S20RC-SCIBERT on numeric surface
forms in a subsample of body text from S20ORC. La-
bels are heuristics based on token-level patterns.
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F Numeric representations in
S20RC-SCIBERT

Academic papers contain substantially more di-
verse uses of numeric surface forms than typical
web text, such as experimental results, equations,
citation references and section/figure markers. To
demonstrate this, we cluster contextual word rep-
resentations involving numbers, heuristically la-
beling them into one of 8 categories based on sur-
face patterns. Examining the progression of the
contextual representations through the layers of
BERT reveals an initial focus on sentence position
(expected, due to explicit position embeddings)
and magnitude, with later layers integrating sub-
stantial contextual information, such as the pres-
ence of inline LATEX identifiers, citation indica-
tors and PDF references. Following Peters et al.
(2018b); Liu et al. (2019a), we observe that the fi-
nal 2-3 BERT layers provide embeddings that ex-
cel at predictive language modeling; as such, Fig-
ure 4 uses embeddings from layer 9 of S20RC-
SCIBERT.
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