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Abstract

In this work, we develop SimulSpeech, an end-
to-end simultaneous speech to text translation
system which translates speech in source lan-
guage to text in target language concurrently.
SimulSpeech consists of a speech encoder, a
speech segmenter and a text decoder, where
1) the segmenter builds upon the encoder and
leverages a connectionist temporal classifica-
tion (CTC) loss to split the input streaming
speech in real time, 2) the encoder-decoder at-
tention adopts a wait-k strategy for simulta-
neous translation. SimulSpeech is more chal-
lenging than previous cascaded systems (with
simultaneous automatic speech recognition
(ASR) and simultaneous neural machine trans-
lation (NMT)). We introduce two novel knowl-
edge distillation methods to ensure the perfor-
mance: 1) Attention-level knowledge distilla-
tion transfers the knowledge from the multipli-
cation of the attention matrices of simultane-
ous NMT and ASR models to help the training
of the attention mechanism in SimulSpeech; 2)
Data-level knowledge distillation transfers the
knowledge from the full-sentence NMT model
and also reduces the complexity of data distri-
bution to help on the optimization of Simul-
Speech. Experiments on MuST-C English-
Spanish and English-German spoken language
translation datasets show that SimulSpeech
achieves reasonable BLEU scores and lower
delay compared to full-sentence end-to-end
speech to text translation (without simultane-
ous translation), and better performance than
the two-stage cascaded simultaneous transla-
tion model in terms of BLEU scores and trans-
lation delay.

∗ Equal contribution.
† Corresponding author

1 Introduction

Simultaneous speech to text translation (Fügen
et al., 2007; Oda et al., 2014; Dalvi et al., 2018),
which translates source-language speech into target-
language text concurrently, is of great importance
to the real-time understanding of spoken lectures or
conversations and now widely used in many scenar-
ios including live video streaming and international
conferences. However, it is widely considered as
one of the challenging tasks in machine transla-
tion domain because simultaneous speech to text
translation has to understand the speech and trade
off translation accuracy and delay. Conventional
approaches to simultaneous speech to text transla-
tion (Fügen et al., 2007; Oda et al., 2014; Dalvi
et al., 2018) divide the translation process into two
stages: simultaneous automatic speech recognition
(ASR) (Rao et al., 2017) and simultaneous neu-
ral machine translation (NMT) (Gu et al., 2016),
which cannot be optimized jointly and result in in-
ferior accuracy, and also incurs more translation
delay due to two stages.

In this paper, we move a step further to translate
the source speech to target text simultaneously, and
develop SimulSpeech, an end-to-end simultaneous
speech to text translation system. The SimulSpeech
model consists of 1) a speech encoder where each
speech frame can only see its previous frames to
simulate streaming speech inputs; 2) a text decoder
where the encoder-decoder attention follows the
wait-k strategy (Ma et al., 2018) to decide when to
listen and write on the source speech and target text
respectively (see Figure 1); 3) a speech segmenter
that builds upon the encoder and leverages a CTC
loss to detect the word boundary, which is used
to decide when to stop listening according to the
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Figure 1: The wait-k strategy for simultaneous speech
to text translation. The model will wait for the first
k source speech segments and then start to translate a
target word. After that, once receiving a new source
segment, the decoder generates a new target word until
there is no more source word, and then the translation
degrades to the full-sentence translation. The example
shows the case with k = 2.

wait-k strategy.
Considering the difficulty of this task, we elab-

orately design two techniques to boost the perfor-
mance of SimulSpeech: 1) attention-level knowl-
edge distillation that transfers the knowledge from
the multiplication of the attention matrices of si-
multaneous NMT and ASR model to SimulSpeech
to help the training of its attention mechanism; 2)
data-level knowledge distillation that transfers the
knowledge from a full-sentence NMT model to
SimulSpeech and also reduces the complexity of
data distribution (Zhou et al., 2019) to help on the
optimization of SimulSpeech model.

Compared with the cascaded pipeline that trains
simultaneous ASR and NMT models separately,
SimulSpeech can alleviate the error propagation
problem and optimize all model parameters jointly
towards the end goal, as well as reduce the de-
lay of simultaneous translation. Experiments on
MuST-C1 English-Spanish and English-German
spoken language translation datasets demonstrate
that SimulSpeech: 1) achieves reasonable BLEU
scores and lower delay compared to full-sentence
end-to-end speech to text translation (without si-
multaneous translation), and 2) obtains better per-
formance than the two-stage cascaded simultane-
ous translation model in terms of BLEU scores and
translation delay.

1https://ict.fbk.eu/must-c/

2 Preliminaries

In this section, we briefly review some basic knowl-
edge for simultaneous speech to text translation,
including speech to text translation, simultaneous
translation based on wait-k strategy, and CTC loss
for segmentation.

Speech to Text Translation Given a set of bilin-
gual speech-text sentence pairs D = {(x, y) ∈
(X × Y)}, an speech to text machine translation
model learns the parameter θ by minimizing the
negative log-likelihood −

∑
(x,y)∈D logP (y|x; θ).

P (y|x; θ) is calculated based on the chain rule∏Ty
t=1 P (yt|y<t, x; θ), where y<t represents the

text tokens preceding position t, and Ty is the
length of text sentence y. An encoder-attention-
decoder framework is usually adopted to model
the conditional probability P (y|x; θ), where the
encoder maps the input audio to a set of hidden
representations h and the decoder generates each
target token yt using the previously generated to-
kens y<t as well as the speech representations h.
Previous works (Bérard et al., 2016; Weiss et al.,
2017; Liu et al., 2019) on speech to text translation
focus on the full-sentence translation where the full
source speech can be seen when predicting each
target token.

Simultaneous Translation Based on Wait-k Si-
multaneous translation aims to translate sentences
before they are finished according to certain strate-
gies. We use wait-k strategy (Ma et al., 2018)
in this work: given a set of speech and text
pairs D = {(x, y) ∈ (X × Y)}, the model
with the wait-k strategy learns the parameter θ
by minimizing the negative log-likelihood loss
−
∑

(x,y)∈D logP (y|x; k; θ), where k corresponds
to the wait-k strategy. P (y|x; k; θ) is calculated
based on the chain rule

P (y|x; k; θ) =
Ty∏
t=1

P (yt|y<t, x<t+k; θ), (1)

where y<t represents the tokens preceding position
t and Ty is the length of target sentence y, x<t+k
represents the speech segments preceding position
t+ k. The wait-k strategy ensures that the model
can see t+ k − 1 source segments when generat-
ing the target token yt, while can see the whole
sentence if there is no more source segments.

CTC for Alignment and Segmentation The
connectionist temporal classification (CTC)



3789

Masked Self-
attention

Add & Norm

Feed Forward

Add & Norm

Masked Self-
Attention

Feed Forward

Add & Norm

Wait-K Decoder 
Attention

Word Embedding

Target text

Pre-Net

Add & Norm

Add & Norm

Speech 
Segmenter

Softmax Linear

N× ×N

Output text

Word boundary

(a) SimulSpeech model structure.

x

Data Distillation
Source Text Encoder

(Source Text)
Decoder
(Target Text)

Attention  Distillation

Predicted 
Source 

Text

Source Text

Encoder
(source text, masked)

Decoder
(source text, wait-k)

Auxiliary Tasks

Speech Segmenter
+

Encoder
(source speech, masked)

Decoder
(target text, wait-k)

Source Speech

Predicted 
Target 
Text

Auxiliary NMT Auxiliary ASR

NMT Attention ASR Attention

S2T Attention

CTC  loss

(b) The training pipeline for SimulSpeech model.

Figure 2: (a) The model structure of SimulSpeech. (b) The training pipeline for SimulSpeech model. The Simul-
Speech model is shown in purple box, and the auxiliary training techniques are in other boxes.

loss (Graves et al., 2006) is widely used for
alignment and segmentation, which maps the
frame-level classification outputs of a speech
sequence to a text sequence (with a different length
from the speech sequence). For a text sequence
y, CTC introduces a set of intermediate represen-
tation paths φ(y) called CTC paths, which has a
many-to-one mapping to y since multiple CTC
paths can correspond to the same text sequence.
For example, both the frame-level classification
outputs (CTC paths) “HHE∅L∅LOO” and
“∅HHEEL∅LO” are mapped to text sequence
“HELLO”, where ∅ is the blank symbol. The
likelihood of y can thus be evaluated as a sum of
the probabilities of its CTC paths:

P (y|x) =
∑
z∈φ(y)

P (z|x), (2)

where x is the utterance consisting of speech
frames and z is one of the CTC path.

3 The SimulSpeech Model

Similar to many sequence to sequence generation
tasks, SimulSpeech adopts the encoder-decoder
framework. As shown in Figure 2a, both the en-
coder and decoder follow the basic network struc-
ture of Transformer (Vaswani et al., 2017a) for neu-
ral machine translation. SimulSpeech is different
from Transformer in several aspects:

• To handle speech inputs, we employ a speech
pre-net (Shen et al., 2018) to extract speech

features, which consists of multiple convo-
lutional layers with the same hidden size as
Transformer.

• To enable simultaneous translation, we design
different attention mechanisms for the encoder
and decoder. The encoder adopts masked self-
attention, which masks the future frames of a
speech frame when encoding it and ensures
that each speech frame can only see its previ-
ous frames to simulate the real-time streaming
inputs. The decoder adopts the wait-k strat-
egy (Ma et al., 2018), as shown in Equation 1,
which guarantees that each target token can
only see the source segments following the
wait-k strategy.

• As the wait-k strategy requires source speech
to be discrete segments, we introduce a speech
segmenter to split a speech sequence into dis-
crete segments, each representing a word or
phrase. The segmenter takes the outputs of
the speech encoder as inputs, passes through
multiple non-linear dense layers and then a
softmax linear layer to predict the character
in frame level. When a word boundary token
(the space character in our case) is predicted
by the segmenter, SimulSpeech knows a word
is ended. Multiple consecutive word boundary
tokens are merged into one boundary.
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4 Training of SimulSpeech

The training of the SimulSpeech model is more dif-
ficult than that of an NMT model or an ASR model,
since SimulSpeech involves multiple modalities
(i.e., speech and text) and multiple languages. In
this section, we discuss how to train the Simul-
Speech model. As shown in Figure 2b, we intro-
duce the CTC loss for the training of the speech seg-
menter, and attention-level and data-level knowl-
edge distillation for the training of the overall
SimulSpeech model. In SimulSpeech training, the
training data are provided in the format of (source
speech, source text, target text) tuples.

4.1 Training Segmenter with CTC Loss
In SimulSpeech, the speech segmenter is used to
detect word boundaries, and detected boundaries
are used to determine when to stop listening and
switch to translation, which is critical for the perfor-
mance of simultaneous translation. As it is hard to
find frame-level label to guide the output of the soft-
max linear layer in speech segmenter, we leverage
connectionist temporal classification (CTC) loss
to train the speech segmenter. According to Equa-
tion 2, the CTC loss is formulated as

Lctc = −
∑

(x,y)∈(X×Ysrc)

∑
z∈φ(y)

P (z|x), (3)

where (X × Ysrc) denotes the set of source speech
and source text sequence pairs, and φ(y) denotes
the set of CTC paths for y.

During inference, we simply use the best path
decoding (Graves et al., 2006) to decide the word
boundary without seeing subsequent speech frames,
which is consistent with the masked self-attention
in speech encoder, i.e., the output of segmenter for
position i depends only on the inputs at positions
preceding i.

4.2 Attention-Level Knowledge Distillation
To better train the SimulSpeech model, we propose
a novel attention-level knowledge distillation that
is specially designed for speech to text translation,

which transfers the knowledge from the multiplica-
tion of attention weights matrices of simultaneous
ASR and NMT models, into the attention of the
SimulSpeech model. In order to obtain the atten-
tion weights of simultaneous ASR and NMT, we
add auxiliary simultaneous ASR and NMT tasks
which share the same encoder or decoder with
SimulSpeech model respectively, as shown in Fig-
ure 2b. The two auxiliary tasks both leverage a
wait-k strategy similar to that used in SimulSpeech
model.

Denote the sequence length of the source speech,
source text and target text as Ssrc, Tsrc and Ttgt re-
spectively. Denote the attention weights of simulta-
neous ASR and NMT asATsrc×Ssrc andATtgt×Tsrc re-
spectively. Ideally, the attention weights of Simul-
Speech ATtgt×Ssrc should satisfy

ATtgt×Ssrc = ATtgt×Tsrc ×ATsrc×Ssrc . (4)

However, the attention weights are difficult to
learn, and the attention weights of SimulSpeech
model are more difficult to learn than that of the
simultaneous ASR and NMT models since Simul-
Speech is much more challenging. Therefore, we
propose to distill the knowledge from the multipli-
cation of the attention weights of the simultaneous
ASR and NMT, as shown in Figure 2b and Figure 3.
We first multiply the attention matrix of simultane-
ous NMT by that of simultaneous ASR, and then
binarize the attention matrix with a threshold. We
then match the attention weights that is predicted
by the SimulSpeech model to the binarized atten-
tion matrix, with the loss function

Latt kd = −B(ATtgt×Tsrc ×ATsrc×Ssrc)×ATtgt×Ssrc ,
(5)

where B is the binarization operation which set the
element of the matrix to 1 if above the threshold of
0.05, and otherwise to 0.

4.3 Data-Level Knowledge Distillation
Data-level knowledge distillation is widely used
to help model training in various tasks and situa-
tions (Kim and Rush, 2016; Tan et al., 2019) and
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can boost the performance of a student model. In
this work, we leverage knowledge distillation to
transfer the knowledge from a full-sentence NMT
teacher model to a SimulSpeech model. We train
a full-sentence NMT teacher model first and then
generate target text y′ given source text y that is
paired with source speech x. Finally, we train the
student SimulSpeech with the generated target text
y′ which is paired with the source speech x. The
loss function is formulated as

Ldata kd = −
∑

(x,y′)∈(X×Y tgt′ )

logP (y′|x), (6)

where (X × Y tgt′) denotes the set of speech-text
sequence pairs where text is generated by the NMT
teacher model.

The total loss function to train SimulSpeech
model is

L = λ1Lctc + λ2Latt kd + λ3Ldata kd, (7)

where λ1, λ2, λ3 are hyperparameters to trade off
the three losses.

5 Experiments and Results

In this section, we evaluate SimulSpeech on MuST-
C corpus (Di Gangi et al., 2019). First we describe
experimental settings and details, then we show
the experiment results, and further conduct some
analyses on our model.

5.1 Experiment Settings
Datasets We use the MuST-C English-Spanish
(En→Es) and English-German (En→De) speech
translation corpus in our experiments. Both two
datasets contain audio clips in source language, and
the corresponding source-language transcripts and
target-language translated text. The official data
statistics and splits for train/dev/test set are shown
in Table 1. For the speech data, we transform the
raw audio into mel-spectrograms following Shen
et al. (2018) with 50 ms frame size and 12.5 ms
hop size. To simplify the model training, we re-
move some non-verbal annotation in the text, such
as “(Laughing)”, “(Music)”. All the sentences are
first tokenized with moses tokenizer2 and then seg-
mented into subword symbols using Byte Pair En-
coding (BPE) (Sennrich et al., 2016), except for
the label to train the speech segmenter, where we

2https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

use character sequence of source text. We learn the
BPE merge operations across source and target lan-
guages. We use the speech segmenter proposed in
Section 3 to split the speech mel-spectrograms into
segments, where each segment is regarded as dis-
crete tokens and represents a word or short phrase.

Task Train Dev Test

En→Es 229703 (496h) 1316 (2.5h) 2502 (4h)
En→De 265625 (400h) 1423 (2.5h) 2641 (4h)

Table 1: The number of sentences and the duration of
audio in MuST-C dataset.

Model Configuration We use the Trans-
former (Vaswani et al., 2017b) as the basic
SimulSpeech model structure since it achieves
state-of-the-art accuracy and becomes a popular
choice for recent NMT research. The model
hidden size, number of heads, number of encoder
and decoder-layers are set to 384, 4, 6 and 4
respectively. Considering that the adjacent hidden
states are closely related in speech task, we replace
the feed-forward network in Transformer with
a 2-layer 1D convolutional network (Gehring
et al., 2017) with ReLU activation. Left padding
is used in the 1D convolutional network in the
target side (Ren et al., 2019) to avoid the output
token seeing its subsequent tokens in the training
stage. The kernel size and filter size of 1D
convolution are set to 1536 and 9 respectively.
The pre-net (bottom left in Figure 2a) is a 3-layer
convolutional network with left padding, whose
output dimension is same as the hidden size of the
transformer encoder. The decoder of the auxiliary
ASR model and the encoder of the auxiliary NMT
model, as well as the encoder and decoder of
the NMT teacher model share the same model
structures described above.

Training and Inference SimulSpeech is trained
on 2 NVIDIA Tesla V100 GPUs, with totally batch
size of 64 sentences. We use the Adam optimizer
with the default parameters (Kingma and Ba, 2014)
and learning rate schedule in Vaswani et al. (2017a).
We train the SimulSpeech with auxiliary simultane-
ous ASR and NMT tasks by default. We set the λ1,
λ2, λ3 in Equation 7 as 1.0, 0.1, 1.0 respectively,
according to the validation performance. Simul-
Speech is trained and tested with the same k unless
otherwise stated. The translation quality is evalu-
ated by tokenized case sensitive BLEU (Papineni
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et al., 2002) with the perl scripts3. Our code is
based on tensor2tensor (Vaswani et al., 2018)4.

The Metric of Translation Delay Many previ-
ous works focus on proposing the metrics of trans-
lation delay for simultaneous text to text translation,
such as average proportion (AP) (Cho and Esipova,
2016) and average latency (AL) (Ma et al., 2018).
The former calculates the mean absolute delay cost
by each target token, while the latter measures the
degree of out of sync with the speaker. In this work,
we extend the AP and AL metric that are originally
calculated on word sequence to speech sequence
for simultaneous speech to text translation task.
Our extended AP is defined as follows:

AP (x, y) =
1

|x|time|y|

|y|∑
i=1

t(i), (8)

where x and y are the source speech and target text,
|x|time is the total time duration of source speech,
|y| is the length of target text, t(i) is real-time delay
in terms of source speech when generating the i-th
word in target sequence, i.e., the duration of source
speech listened by the model before writing the
i-th target token. Our extended AL is defined as
follows:

AL(x, y) =
1

τ(|x|seg)

τ(|x|seg)∑
i=1

g(i)− i− 1

r
, (9)

where |x|seg is length of speech segments, g(i) is
the delay at step i, i.e., the number of source seg-
ments listened by the model before writing the i-th
target token. τ(|x|seg) denotes the earliest timestep
where our model has consumed the entire source
sequence:

τ(|x|seg) = argmin
t
(g(t) = |x|seg), (10)

and r = |y|/|x|seg is the length ratio between target
and source sequence.

5.2 Experiment Results
Translation Accuracy First, we evaluate the per-
formance of SimulSpeech model under different k.
The BLEU scores of En-Es and En-De are shown
in Table 2. We can see that the performance of our
model does not drop a lot when k is small, com-
pared to the full-sentence translation (training with
k=inf).

3https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl

4https://github.com/tensorflow/tensor2tensor

k 1 3 5 7 9 inf

En-Es 15.02 19.92 21.58 22.42 22.49 22.72
En-Es (FS) 3.25 7.18 10.52 13.33 15.32 22.72

En-De 10.73 15.52 16.90 17.46 17.87 18.29
En-De (FS) 2.58 6.89 9.65 11.70 13.15 18.29

Table 2: The BLEU scores of SimulSpeech on the test
set of the MuST-C En→Es and En →De dataset. FS
denotes training with k=inf.

Translation Delay We plot the translation qual-
ity (in terms of BLEU score) against delay met-
rics (AP and AL) of our SimulSpeech model and
test-time wait-k model (trained with full-sentence
translation but only test with wait-k, denoted as
“train-full test-k”) in Figure 4a and 4b. We can see
that the BLEU scores increase as k increases, with
the sacrifice of translation delay. The accuracy of
SimulSpeech model is always better than the test-
time wait-k, which demonstrates the effectiveness
of the SimulSpeech.
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(a) The translation quality against the latency in terms of
AP.
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Figure 4: The translation quality against the latency
metrics (AP and AL) on En→Es dataset.

Comparison with Cascaded Models Finally,
we implement the cascaded simultaneous speech to
text translation pipeline and compare the accuracy
of SimulSpeech with it under the same translation
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1 2 3 4 5 6 7 8 9 10 11 12
En (source) the first on here is the classic apple.
Es (target) la primera aquı́ es la clásica manzana.

ASR (wait-1) the first on here is the class sake apple.
ASR (wait-1) + NMT (wait-3) pero la primera vez es una manzana motivo de clase.

SimulSpeech (wait-3) la primera es una manzana clásica.

Figure 5: An example from the test set in En→Es dataset, which demonstrates that SimulSpeech outperforms
cascaded models under same delay (the delay of wait-1 for ASR plus wait-3 for NMT is equal to the delay of wait-
3 for SimulSpeech). In this case, wait-1 ASR model in cascaded method does not recognize the word “classic”
correctly, and results in the wrong translation in NMT model.

delay by using the same k. For cascaded method,
we try all possible combinations of wait-k ASR and
wait-k NMT models and report the best one. The
accuracy of the two methods is shown in Table 3.
It can be seen that 1) SimulSpeech outperforms the
cascaded method when k < 9 which covers most
simultaneous translation scenarios. 2) Cascaded
model only outperforms SimulSpeech in larger k5.
These results demonstrate the advantages of Simul-
Speech specifically for simultaneous translation
scenario. We further plot the BLEU scores of the
two methods in Figure 6. It can be seen that Simul-
Speech with wait-3 can achieve the same BLEU
score with the cascaded method under wait-5. To
sum up, SimulSpeech achieves higher translation
accuracy than cascaded method under the same
translation delay, and achieves lower translation
delay with the same translation accuracy.

Model k=1 k=3 k=5 k=7 k=9 k=inf

Cascaded 12.77 16.91 19.66 21.05 23.43 25.60
SimulSpeech 15.02 19.92 21.58 22.42 22.49 22.72

Table 3: The comparison between two-stage cascaded
method and SimulSpeech under different wait-k on
En→Es dataset.

5.3 Ablation Study
We evaluate the effectiveness of each component
and show the results in Table 4. From the BLEU
scores in Row 2 and Row 3, it can be seen that the
translation accuracy with different wait-k can be
boosted by adding auxiliary task to naive simulta-
neous speech to text translation model (denoted as
Naive S2T).

The Effectiveness of data-level knowledge dis-
tillation We further evaluate the effectiveness of
data-level knowledge distillation (Row 4 vs Row
3). The result shows that data-level knowledge dis-
tillation can achieve a large accuracy improvement.

5In a typical simultaneous translation scenario, k should
be as small as possible, otherwise large delay is incurred.

Model k=1 k=5 k=9

Naive S2T 9.02 14.90 15.90

+Aux 12.98 19.41 20.39
+Aux+DataKD 13.77 20.98 21.52
+Aux+AttnKD 13.74 20.64 20.90

+Aux+DataKD+AttKD
(SimulSpeech) 15.02 21.58 22.49

Table 4: The ablation studies on En→Es dataset. The
baseline model (Naive S2T) is the naive simultaneous
speech to text translation model with wait-k policy. We
gradually add our techniques on it to evaluate their ef-
fectiveness.

The Effectiveness of attention-level knowledge
distillation We further evaluate the effectiveness
of attention-level knowledge distillation. We add
attention-level knowledge distillation (Row 5 vs.
Row 3) to the model and find that the accuracy
can also be improved. As a result, we combine
all the techniques together (Row 6, SimulSpeech)
and obtain the best BLEU scores across different
wait-k, which demonstrates the effectiveness of all
techniques we proposed for the training of Simul-
Speech.

The Effectiveness of Speech Segmenter To
evaluate the effectiveness of our segmenter, we
compare the accuracy of SimulSpeech model us-
ing our segmentation method and the ground-truth
segmentation, where we extract the segmentation
from the ground-truth speech and corresponding
transcripts using the alignment tool6 and regard
it as the ground-truth segmentation. As shown
in Table 5, the BLEU scores of SimulSpeech us-
ing our segmentation method is close to that using
ground-truth segmentation7, which demonstrates
the effectiveness of our speech segmenter.

6https://github.com/lowerquality/gentle
7Note that we cannot obtain the ground-truth segmentation

during inference. Therefore the accuracy gap in Table 5 is
reasonable.
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Method k=1 k=3 k=5 k=7 k=9

Ground-Truth 18.04 22.61 23.76 23.36 23.14
Our Method 15.02 19.92 21.58 22.42 22.49

Table 5: The BLEU scores of SimulSpeech on En→Es
using our speech segmentation method and ground-
truth segmentation.

Case Analysis We further conduct case stud-
ies to demonstrate the advantages of our end-to-
end translation over the previous cascaded models.
As shown in Figure 5, simultaneous ASR model
makes a mistake which further affects the accuracy
of downstream simultaneous NMT model, while
SimulSpeech is not suffered by this problem. As a
result, SimulSpeech outperforms cascaded models.
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Figure 6: The comparison between SimulSpeech and
the cascaded method in terms of translation accuracy
and delay on En→Es dataset.

6 Related Works

6.1 Speech to Text Translation

Speech to text translation has been a hot re-
search topic in the field of artificial intelligence
recently (Bérard et al., 2016; Weiss et al., 2017;
Liu et al., 2019). Early works on speech to text
translation rely on a two-stage method by cascaded
ASR and NMT models. Bérard et al. (2016) pro-
posed an end-to-end speech to text translation sys-
tem, which does not leverage source language text
during training or inference. Weiss et al. (2017)
further leveraged an auxiliary ASR model with a
shared encoder with the speech to text model, re-
garding it as a multi-task problem. Vila et al. (2018)
applied Transformer (Vaswani et al., 2017b) archi-
tecture to this task and achieved good accuracy.
Bansal et al. (2018) explored speech to text trans-
lation in the low-resource setting where both data
and computation are limited. Sperber et al. (2019)
proposed a novel attention-passing model for end-

to-end speech to text translation and achieved com-
parable accuracy to the cascaded models.

6.2 Simultaneous Translation

Simultaneous translation aims to translate sen-
tences before they are finished (Fügen et al., 2007;
Oda et al., 2014; Dalvi et al., 2018). Traditional
speech to text simultaneous translation system usu-
ally first recognizes and segments the incoming
speech stream based on an automatic speech recog-
nition (ASR) system, and then translates it to the
text in target language. And most of the previous
works focus on the simultaneous machine transla-
tion part (Zheng et al., 2019): Gu et al. (2016) pro-
posed a framework for simultaneous NMT in which
an agent learns to make decisions on when to trans-
late from the interaction with a pre-trained NMT
environment. Ma et al. (2018) introduced a very
simple but effective wait-k strategy for simultane-
ous NMT based on a prefix-to-prefix framework,
which predicts the next target word conditioned
on the partial source sequence the model has seen,
instead of the full source sequence. The wait-k
strategy will wait for the first k source words and
then start to generate a target word. After that,
once receiving a new source word, the decoder
generates a new target word until there is no more
source word, and then the translation degrades to
full-sentence translation.

7 Conclusion

In this work, we developed SimulSpeech, an end-
to-end simultaneous speech to text translation sys-
tem that directly translates source speech into tar-
get text concurrently. SimulSpeech consists of a
speech encoder, a speech segmenter, and a text de-
coder with wait-k strategy for simultaneous trans-
lation. We further introduced several techniques
including data-level and attention-level knowledge
distillation to boost the accuracy of SimulSpeech.
Experiments on MuST-C spoken language transla-
tion datasets demonstrate the advantages of Simul-
Speech in terms of both translation accuracy and
delay.

For future work, we will design more flexible
policies to achieve better translation quality and
lower delay in simultaneous spoken language trans-
lation. We will also investigate simultaneous trans-
lation from the speech in a source language to the
speech in a target.
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