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Abstract

Natural language processing covers a wide va-
riety of tasks predicting syntax, semantics, and
information content, and usually each type of
output is generated with specially designed
architectures. In this paper, we provide the
simple insight that a great variety of tasks
can be represented in a single unified format
consisting of labeling spans and relations be-
tween spans, thus a single task-independent
model can be used across different tasks. We
perform extensive experiments to test this in-
sight on 10 disparate tasks spanning depen-
dency parsing (syntax), semantic role label-
ing (semantics), relation extraction (informa-
tion content), aspect based sentiment analysis
(sentiment), and many others, achieving per-
formance comparable to state-of-the-art spe-
cialized models. We further demonstrate ben-
efits of multi-task learning, and also show that
the proposed method makes it easy to analyze
differences and similarities in how the model
handles different tasks. Finally, we convert
these datasets into a unified format to build a
benchmark, which provides a holistic testbed
for evaluating future models for generalized
natural language analysis.

1 Introduction

A large number of natural language processing
(NLP) tasks exist to analyze various aspects of hu-
man language, including syntax (e.g., constituency
and dependency parsing), semantics (e.g., seman-
tic role labeling), information content (e.g., named
entity recognition and relation extraction), or sen-
timent (e.g., sentiment analysis). At first glance,
these tasks are seemingly very different in both the
structure of their output and the variety of infor-
mation that they try to capture. To handle these
different characteristics, researchers usually use
specially designed neural network architectures. In
this paper we ask the simple questions: are the

Figure 1: An example from BRAT, consisting of POS,
NER, and RE.

task-specific architectures really necessary? Or
with the appropriate representational methodology,
can we devise a single model that can perform —
and achieve state-of-the-art performance on — a
large number of natural language analysis tasks?

Interestingly, in the domain of efficient human
annotation interfaces, it is already standard to use
unified representations for a wide variety of NLP
tasks. Figure 1 shows one example of the BRAT
(Stenetorp et al., 2012) annotation interface, which
has been used for annotating data for tasks as broad
as part-of-speech tagging, named entity recogni-
tion, relation extraction, and many others. Notably,
this interface has a single unified format that con-
sists of spans (e.g., the span of an entity), labels on
the spans (e.g., the variety of entity such as “per-
son” or “location”), and labeled relations between
the spans (e.g., “born-in”). These labeled relations
can form a tree or a graph structure, expressing
the linguistic structure of sentences (e.g., depen-
dency tree). We detail this BRAT format and how it
can be used to represent a wide number of natural
language analysis tasks in Section 2.

The simple hypothesis behind our paper is: if
humans can perform natural language analysis in
a single unified format, then perhaps machines can
as well. Fortunately, there already exist NLP mod-
els that perform span prediction and prediction of
relations between pairs of spans, such as the end-
to-end coreference model of Lee et al. (2017). We
extend this model with minor architectural mod-
ifications (which are not our core contributions)
and pre-trained contextualized representations (e.g.,
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Information Extraction POS Parsing SRL Sentiment
NER RE Coref. OpenIE Dep. Consti. ABSA ORL

Different Models for Different Tasks

ELMo (Peters et al., 2018) 3 7 3 7 7 7 7 7 3 7

BERT (Devlin et al., 2019) 3 7 7 7 7 7 7 7 7 7

SpanBERT (Joshi et al., 2019) 7 3 3 7 7 7 7 7 7 7

Single Model for Different Tasks

Guo et al. (2016) 7 3 7 7 7 7 7 3 7 7

Swayamdipta et al. (2018) 7 7 3 7 7 7 3 3 7 7

Strubell et al. (2018) 7 7 7 7 3 3 7 3 7 7

Clark et al. (2018) 3 7 7 7 3 3 7 7 7 7

Luan et al. (2018, 2019) 3 3 3 7 7 7 7 7 7 7

Dixit and Al-Onaizan (2019) 3 3 7 7 7 7 7 7 7 7

Marasović and Frank (2018) 7 7 7 7 7 7 7 3 7 3

Hashimoto et al. (2017) 7 7 7 7 3 3 7 7 7 7

This Work 3 3 3 3 3 3 3 3 3 3

Table 1: A comparison of the tasks covered by previous work and our work.

BERT; Devlin et al. (2019)1) then demonstrate the
applicability and versatility of this single model
on 10 tasks, including named entity recognition
(NER), relation extraction (RE), coreference reso-
lution (Coref.), open information extraction (Ope-
nIE), part-of-speech tagging (POS), dependency
parsing (Dep.), constituency parsing (Consti.), se-
mantic role labeling (SRL), aspect based sentiment
analysis (ABSA), and opinion role labeling (ORL).
While previous work has used similar formalisms
to understand the representations learned by pre-
trained embeddings (Tenney et al., 2019a,b), to the
best of our knowledge this is the first work that uses
such a unified model to actually perform analysis.
Moreover, we demonstrate that despite the model’s
simplicity, it can achieve comparable performance
with special-purpose state-of-the-art models on the
tasks above (Table 1). We also demonstrate that this
framework allows us to easily perform multi-task
learning (MTL), leading to improvements when
there are related tasks to be learned from or data
is sparse. Further analysis shows that dissimilar
tasks exhibit divergent attention patterns, which
explains why MTL is harmful on certain tasks. We
have released our code and the General Language
Analysis Datasets (GLAD) benchmark with 8
datasets covering 10 tasks in the BRAT format

1In contrast to work on pre-trained contextualized repre-
sentations like ELMo (Peters et al., 2018) or BERT (Devlin
et al., 2019) that learn unified features to represent the input in
different tasks, we propose a unified representational method-
ology that represents the output of different tasks. Analysis
models using BERT still use special-purpose output predictors
for specific tasks or task classes.

at https://github.com/neulab/cmu-multinlp,
and provide a leaderboard to facilitate future work
on generalized models for NLP.

2 Span-relation Representations

In this section, we explain how the BRAT format
can be used to represent a large number of tasks.
There are two fundamental types of annotations:
span annotations and relation annotations. Given a
sentence x = [w1, w2, ..., wn] of n tokens, a span
annotation (si, li) consists of a contiguous span
of tokens si = [wbi , wbi+1, ..., wei ] and its label
li (li ∈ L), where bi/ei are the start/end indices
respectively, and L is a set of span labels. A re-
lation annotation (sj , sk, rjk) refers to a relation
rjk (rjk ∈ R) between the head span sj and the
tail span sk, where R is a set of relation types.
This span-relation representation can easily express
many tasks by defining L and R accordingly, as
summarized in Table 2a and Table 2b. These tasks
fall in two categories: span-oriented tasks, where
the goal is to predict labeled spans (e.g., named en-
tities in NER) and relation-oriented tasks, where
the goal is to predict relations between two spans
(e.g., relation between two entities in RE). For ex-
ample, constituency parsing (Collins, 1997) is a
span-oriented task aiming to produce a syntactic
parse tree for a sentence, where each node of the
tree is an individual span associated with a con-
stituent label. Coreference resolution (Pradhan
et al., 2012) is a relation-oriented task that links
an expression to its mentions within or beyond a
single sentence. Dependency parsing (Kübler et al.,

https://github.com/neulab/cmu-multinlp
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Task Spans annotated with labels

NER Barack Obama
person

was born in Hawaii
location

.

Consti. And their suspicions
NP

of each other
NP

PP
NP

run deep
ADVP

VP

.

S

POS What
WP

kind
NN

of
IN

memory
NN

?

ABSA Great laptop that offers many great features
positive

!

Table 2a: Span-oriented tasks. Spans are annotated by
underlines and their labels.

Task Spans and relations annotated with labels

RE The burst has been caused by pressure.
cause-effect

Coref. I voted for Tom because he is clever.
coref.

SRL We brought you the tale of two cities.
ARG0 ARG2

ARG1

OpenIE The four lawyers climbed out from under a table.
ARG0 ARG1

Dep. The entire division employs about 850 workers.

det

amod nsubj advmod nummod

dobj

ORL We therefore as MDC do not accept this result.
holder target

Table 2b: Relation-oriented tasks. Directed arcs indicate the
relations between spans.

2009) is also a relation-oriented task that aims to
relate a word (single-word span) to its syntactic par-
ent word with the corresponding dependency type.
Detailed explanations of all tasks can be found in
Appendix A.

While the tasks above represent a remarkably
broad swath of NLP, it is worth mentioning what
we have not covered, to properly scope this work.
Notably, sentence-level tasks such as text classifica-
tion and natural language inference are not covered,
although they can also be formulated using this
span-relation representation by treating the entire
sentence as a span. We chose to omit these tasks
because they are already well-represented by pre-
vious work on generalized architectures (Lan and
Xu, 2018) and multi-task learning (Devlin et al.,
2019; Liu et al., 2019), and thus we mainly focus
on tasks using phrase-like spans. In addition, the
span-relation representations described here are de-
signed for natural language analysis, and cannot
handle tasks that require generation of text, such
as machine translation (Bojar et al., 2014), dialog
response generation (Lowe et al., 2015), and sum-
marization (Nallapati et al., 2016). There are also
a small number of analysis tasks such as semantic
parsing to logical forms (Banarescu et al., 2013)
where the outputs are not directly associated with
spans in the input, and handling these tasks is be-
yond the scope of this work.

3 Span-relation Model

Now that it is clear that a very large number of anal-
ysis tasks can be formulated in a single format, we
turn to devising a single model that can solve these
tasks. We base our model on a span-based model
first designed for end-to-end coreference resolution

(Lee et al., 2017), which is then adapted for other
tasks (He et al., 2018; Luan et al., 2018, 2019; Dixit
and Al-Onaizan, 2019; Zhang and Zhao, 2019). At
the core of the model is a module to represent each
span as a fixed-length vector, which is used to pre-
dict labels for spans or span pairs. We first briefly
describe the span representation used and proven to
be effective in previous works, then highlight some
details we introduce to make this model generalize
to a wide variety of tasks.

Span Representation Given a sentence x =
[w1, w2, ..., wn] of n tokens, a span si =
[wbi , wbi+1, ..., wei ] is represented by concatenat-
ing two components: a content representation zci
calculated as the weighted average across all token
embeddings in the span, and a boundary represen-
tation zui that concatenates the embeddings at the
start and end positions of the span. Specifically,

c1, c2, ..., cn = TokenRepr(w1, w2, ..., wn), (1)
u1,u2, ...,un = BiLSTM(c1, c2, ..., cn), (2)

zci = SelfAttn(cbi , cbi+1, ..., cei), (3)
zui = [ubi ;uei ], zi = [zci ; z

u
i ], (4)

where TokenRepr could be non-contextualized,
such as GloVe (Pennington et al., 2014), or contex-
tualized, such as BERT (Devlin et al., 2019). We
refer to Lee et al. (2017) for further details.

Span and Relation Label Prediction Since we
extract spans and relations in an end-to-end fashion,
we introduce two additional labels NEG SPAN and
NEG REL in L andR respectively. NEG SPAN in-
dicates invalid spans (e.g., spans that are not named
entities in NER) and NEG REL indicates invalid
span pairs without any relation between them (i.e.,
no relation exists between two arguments in SRL).
We first predict labels for all spans up to a length
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Dataset Domain #Sent. Task #Spans #Relations Metric

Wet Lab Protocols biology 14,301 NER 60,745 - F1

(Kulkarni et al., 2018) RE 60,745 43,773 F1

CoNLL-2003 (Sang and Meulder, 2003) news 20,744 NER 35,089 - F1

SemEval-2010 Task 8 (Hendrickx et al., 2010) misc. 10,717 RE 21,437 10,717 Macro F1
◦

OntoNotes 5.0 ?

(Pradhan et al., 2013) misc. 94,268

Coref. 194,477 1,166,513 Avg F1

SRL 745,796 543,534 F1

POS 1,631,995 - Accuracy
Dep. 1,722,571 1,628,558 LAS

Consti. 1,320,702 - Evalb F1
†

Penn Treebank
(Marcus et al., 1994) speech, news

49,208 POS 1,173,766 - Accuracy
43,948 Dep. 1,090,777 1,046,829 LAS
43,948 Consti. 871,264 - Evalb F1

†

OIE2016 (Stanovsky and Dagan, 2016) news, Wiki 2,534 OpenIE 15,717 12,451 F1

MPQA 3.0 (Deng and Wiebe, 2015) news 3,585 ORL 13,841 9,286 F1

SemEval-2014 Task 4 (Pontiki et al., 2014) reviews 4,451 ABSA 7,674 - Accuracy ◦

Table 3: Statistics of GLAD, consisting of 10 tasks from 8 datasets. ? Following He et al. (2018), we use a subset
of OntoNotes 5.0 dataset based on CoNLL 2012 splits (Pradhan et al., 2012). ◦ Previous works use gold standard
spans in these evaluations. † We use the bracket scoring program Evalb (Collins, 1997) in constituency parsing.

of l words using a multilayer perceptron (MLP):
softmax(MLPspan(zi)) ∈ ∆|L|, where ∆|L| is a
|L|-dimensional simplex. Then we keep the top
K = τ · n spans with the lowest NEG SPAN prob-
ability in relation prediction for efficiency, where
smaller pruning threshold τ indicates more aggres-
sive pruning. Another MLP is applied to pairs
of the remaining spans to produce their relation
scores: ojk = MLPrel([zj ; zk; zj · zk]) ∈ R|R|,
where j and k index two spans.

Application to Disparate Tasks For most of the
tasks, we can simply maximize the probability of
the ground truth relation for all pairs of the re-
maining spans. However, some tasks might have
different requirements, e.g., coreference resolution
aims to cluster spans referring to the same concept
and we do not care about which antecedent a span
is linked to if there are multiple ones. Thus, we
provide two training loss functions:

1. Pairwise Maximize the probabilities of the
ground truth relations for all pairs of the remain-
ing spans independently: softmax(ojk)rjk ,
where rjk indexes the ground truth relation.

2. Head Maximize the probability of ground
truth head spans for a specific span sj :∑

k∈head(sj) softmax([oj1, oj2, ..., ojK ])k,
where head(·) returns indices of one or more
heads and oj· is the corresponding scalar from
oj· indicating how likely two spans are related.

We use option 1 for all tasks except for coreference

resolution which uses option 2. Note that the above
loss functions only differ in how relation scores
are normalized and the other parts of the model
remain the same across different tasks. At test time,
we follow previous inference methods to generate
valid outputs. For coreference resolution, we link
a span to the antecedent with highest score (Lee
et al., 2017). For constituency parsing, we use
greedy top-down decoding to generate a valid parse
tree (Stern et al., 2017). For dependency parsing,
each word is linked to exactly one parent with the
highest relation probability. For other tasks, we
predict relations for all span pairs and use those not
predicted as NEG REL to construct outputs.

Our core insight is that the above formulation
is largely task-agnostic, meaning that a task can
be modeled in this framework as long as it can be
formulated as a span-relation prediction problem
with properly defined span labels L and relation
labelsR. As shown in Table 1, this unified Span-
Relation (SpanRel) model makes it simple to scale
to a large number of language analysis tasks, with
breadth far beyond that of previous work.

Multi-task Learning The SpanRel model makes
it easy to perform multi-task learning (MTL) by
sharing all parameters except for the MLPs used for
label prediction. However, because different tasks
capture different linguistic aspects, they are not
equally beneficial to each other. It is expected that
jointly training on related tasks is helpful, while
forcing the same model to solve unrelated tasks
might even hurt the performance (Ruder, 2017).



2124

Category Task Metric Dataset Setting SOTA Model Previous SOTA Our Model

IE

NER F1
CoNLL03 BERT Devlin et al. (2019) 92.8 92.2

WLP ELMo Luan et al. (2019) 79.5 79.2

RE
Macro F1 SemEval10 BERT, gold Wu and He (2019) 89.3 87.4

F1 WLP ELMo Luan et al. (2019) 64.1 65.5

Coref. Avg F1 OntoNotes GloVe, CharCNN Lee et al. (2017)◦ 62.0 61.1

OpenIE F1 OIE2016 ELMo Stanovsky et al. (2018)? 31.1 35.2

SRL F1 OntoNotes ELMo He et al. (2018)† 82.9 82.4

Parsing
Dep. LAS PTB ELMo Clark et al. (2018) 94.4 94.7

Consti. Evalb F1 PTB BERT Kitaev et al. (2019) 95.6 95.5

Sentiment
ABSA Accuracy SemEval14 BERT, gold Xu et al. (2019)/ 85.0/78.1 85.5/76.6

ORL F1 MPQA 3.0 GloVe, gold Marasović and Frank (2018)? 56.4 55.6

POS Accuracy PTB ELMo Clark et al. (2018) 97.7 97.7

Table 4: Comparison between SpanRel models and task-specific SOTA models.2 Following Luan et al. (2019), we
perform NER and RE jointly on WLP dataset. We use gold entities in SemEval-2010 Task 8, gold aspect terms in
SemEval-2014 Task 4, and gold opinion expressions in MPQA 3.0 to be consistent with existing works.

Compared to manually choosing source tasks based
on prior knowledge, which might be sub-optimal
when the number of tasks is large, SpanRel offers
a systematic way to examine relative benefits of
source-target task pairs by either performing pair-
wise MTL or attention-based analysis, as we will
show in Section 4.3.

4 GLAD Benchmark and Results

We first describe our General Language Analysis
Datasets (GLAD) benchmark and evaluation met-
rics, then conduct experiments to (1) verify that
SpanRel can achieve comparable performance
across all tasks (Section 4.2), and (2) demonstrate
its benefits in multi-task learning (Section 4.3).

4.1 Experimental Settings
GLAD Benchmark and Evaluation Metrics
As summarized in Table 3, we convert 8 widely
used datasets with annotations of 10 tasks into
the BRAT format and include them in the GLAD
benchmark. It covers diverse domains, providing a
holistic testbed for natural language analysis evalu-
ation. The major evaluation metric is span-based F1

(denoted as F1), a standard metric for SRL. Preci-
sion is the proportion of extracted spans (spans not
predicted as NEG SPAN) that are consistent with

2◦ The small version of Lee et al. (2017)’s method with
100 antecedents and no speaker features. ? For OpenIE and
ORL, we use span-based F1 instead of syntactic-head-based
F1 and binary coverage F1 used in the original papers because
they are biased towards extracting long spans. † For SRL, we
choose to compare with He et al. (2018) because they also
extract predicates and arguments in an end-to-end way. / We
follow Xu et al. (2019) to report accuracy of restaurant and
laptop domain separately in ABSA.

the ground truth. Recall is the proportion of ground
truth spans that are correctly extracted. Span F1

is also applicable to relations, where an extracted
relation (relations not predicted as NEG REL) is
correct iff both head and tail spans have correct
boundaries and the predicted relation is correct. To
make fair comparisons with existing works, we
also compute standard metrics for different tasks,
as listed in Table 3.

Implementation Details We attempted four to-
ken representation methods (Equation 1), namely
GloVe (Pennington et al., 2014), ELMo (Peters
et al., 2018), BERT (Devlin et al., 2019), and Span-
BERT (Joshi et al., 2019). We use BERTbase in our
main results and report BERTlarge in Appendix B.
A three-layer BiLSTM with 256 hidden units is
used (Equation 2). Both span and relation predic-
tion MLPs have two layers with 128 hidden units.
Dropout (Srivastava et al., 2014) of 0.5 is applied
to all layers. For GloVe and ELMo, we use Adam
(Kingma and Ba, 2015) with learning rate of 1e-3
and early stop with patience of 3. For BERT and
SpanBERT, we follow standard fine-tuning with
learning rate of 5e-5, β1 = 0.9, β2 = 0.999, L2
weight decay of 0.01, warmup over the first 10%
steps, and number of epochs tuned on development
set. Task-specific hyperparameters maximal span
length and pruning ratio are tuned on development
set and listed in Appendix C.

4.2 Comparison with Task-specific SOTA
We compare the SpanRel model with state-of-the-
art task-specific models by training on data from a
single task. By doing so we attempt to answer the
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research question “can a single model with mini-
mal task-specific engineering achieve competitive
or superior performance to other models that have
been specifically engineered?” We select competi-
tive SOTA models mainly based on settings, e.g.,
single-task learning and end-to-end extraction of
spans and relations. To make fair comparisons, to-
ken embeddings (GloVe, ELMo, BERT) and other
hyperparameters (e.g., the number of antecedents
in Coref. and the maximal span length in SRL) in
our method are set to match those used by SOTA
models, to focus on differences brought about by
the model architecture.

As shown in Table 4, the SpanRel model
achieves comparable performances as task-specific
SOTA methods (regardless of whether the token
representation is contextualized or not). This indi-
cates that the span-relation format can generically
represent a large number of natural language analy-
sis tasks and it is possible to devise a single unified
model that achieves strong performance on all of
them. It provides a strong and generic baseline
for natural language analysis tasks and a way to
examine the usefulness of task-specific designs.

4.3 Multi-task Learning with SpanRel

To demonstrate the benefit of the SpanRel model in
MTL, we perform single-task learning (STL) and
MTL across all tasks using end-to-end settings.3

Following Liu et al. (2019), we perform MTL+fine-
tuning and show the results in separate columns
of Table 5. Contextualized token representations
yield significantly better results than GloVe on all
tasks, indicating that pre-training on large corpora
is almost universally helpful to NLP tasks. Compar-
ing the results of MTL+fine-tuning with STL, we
found that performance with GloVe drops on 8 out
of 15 tasks, most of which are tasks with relatively
sparse data. It is probably because the capacity of
the GloVe-based model is too small to store all the
patterns required by different tasks. The results
of contextualized representations are mixed, with
some tasks being improved and others remaining
the same or degrading. We hypothesize that this
is because different tasks capture different linguis-
tic aspects, thus are not equally helpful to each
other. Reconciling these seemingly different tasks
in the same model might be harmful to some tasks.

3Span-based F1 is used as the evaluation metric in
SemEval-2010 Task 8 and SemEval-2014 Task 4 as opposed to
macro F1 and accuracy reported in the original papers because
we aim at end-to-end extractions.

Notably, as the contextualized representations be-
come stronger, the performance of MTL+FT be-
comes more favorable. 5 out of 15 tasks (NER,
RE, OpenIE, SRL, ORL) observe statistically sig-
nificant improvements (p-value < 0.05 with paired
bootstrap re-sampling) with SpanBERT, a contex-
tualized embedding pre-trained with span-based
training objectives, while only one task degrades
(ABSA), indicating its superiority in reconciling
spans from different tasks. The GLAD benchmark
provides a holistic testbed for evaluating natural
language analysis capability.

Task Relatedness Analysis To further investi-
gate how different tasks interact with each other,
we choose five source tasks (i.e., tasks used to im-
prove other tasks, e.g., POS, NER, Consti., Dep.,
and SRL) that have been widely used in MTL
(Hashimoto et al., 2017; Strubell et al., 2018) and
six target tasks (i.e., tasks to be improved, e.g., Ope-
nIE, NER, RE, ABSA, ORL, and SRL) to perform
pairwise multi-task learning.

We hypothesize that although language model-
ing pre-training is theoretically orthogonal to MTL
(Swayamdipta et al., 2018), in practice their ben-
efits tends to overlap. To analyze these two fac-
tors separately, we start with a weak representa-
tion GloVe to study task relatedness, then move
to BERT to demonstrate how much we can still
improve with MTL given strong and contextual-
ized representations. As shown in Table 6 (GloVe),
tasks are not equally useful to each other. Notably,
(1) for OpenIE and ORL, multi-task learning with
SRL improves the performance significantly, while
other tasks lead to less or no improvements. (2) De-
pendency parsing and SRL are generic source tasks
that are beneficial to most of the target tasks. This
unified SpanRel makes it easy to perform MTL and
decide beneficial source tasks.

Next, we demonstrate that our framework also
provides a platform for analysis of similarities and
differences between different tasks. Inspired by the
intuition that the attention coefficients are some-
what indicative of a model’s internal focus (Li et al.,
2016; Vig, 2019; Clark et al., 2019), we hypothe-
size that the similarity or difference between atten-
tion mechanisms may be correlated with similarity
between tasks, or even the success or failure of
MTL. To test this hypothesis, we extract the at-
tention maps of two BERT-based SpanRel models
(trained on a source t′ and a target task t separately)
over sentencesXt from the target task, and compute
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GloVe ELMo BERTbase SpanBERTbase
Category Task Metric Dataset STL MTL +FT STL MTL +FT STL MTL +FT STL MTL +FT

IE

NER F1
CoNLL03 88.4 86.2↓ 87.5↓ 91.9 91.6 91.6 91.0 88.6↓ 90.2↓ 91.3 90.4↓ 91.2

WLP 77.6 71.5↓ 76.5↓ 79.2 77.4↓ 78.2↓ 78.1 78.2 78.5 77.9 78.6↑ 78.5↑

RE F1
SemEval10 50.7 15.2↓ 33.0↓ 61.8 30.6↓ 42.9↓ 61.7 55.1↓ 59.8↓ 62.1 54.6↓ 61.8

WLP 64.9 38.5↓ 53.9↓ 65.5 52.0↓ 55.1↓ 64.7 65.9↑ 66.5↑ 64.1 67.2↑ 67.2↑

Coref Avg F1 OntoNotes 56.3 50.3↓ 53.0↓ 62.2 62.9↑ 63.3↑ 66.2 65.5↓ 65.8 70.0 68.9↓ 69.7

OpenIE F1 OIE2016 28.3 6.8↓ 19.6↓ 35.2 30.0↓ 32.9↓ 36.7 37.1 38.5↑ 36.5 37.3↑ 38.6↑

SRL F1 OntoNotes 78.0 77.9 78.6↑ 82.4 82.3 82.4 83.3 82.9 83.4 83.1 83.3 83.8↑

Parsing
Dep. LAS

PTB 92.9 93.2 93.5↑ 94.7 94.9 94.9 94.9 94.8 95.0 95.1 95.1 95.1
OntoNotes 90.4 90.5 90.5 92.3 93.2↑ 92.8↑ 94.1 93.8 94.0 94.2 94.1 94.2

Consti. Evalb F1
PTB 93.4 - 93.8 95.3 - 95.3 95.5 - 95.2 95.8 - 95.5

OntoNotes 91.0 - 91.5↑ 93.2 - 93.7↑ 93.6 - 93.8 94.3 - 94.2

Sentiment
ABSA F1 SemEval14 63.5 48.5↓ 59.0↓ 69.2 57.0↓ 59.0↓ 70.8 63.1↓ 67.0↓ 70.0 63.5↓ 69.5↓
ORL F1 MPQA 3.0 38.2 18.4↓ 31.6↓ 42.9 24.7↓ 32.4↓ 44.5 38.1↓ 45.6↑ 45.2 40.2↓ 47.5↑

POS Accuracy
PTB 96.8 96.8 96.8 97.7 97.7 97.8 97.6 97.3 97.3 97.6 97.6 97.6

OntoNotes 97.0 97.0 97.1 98.2 98.2 98.3 97.7 97.8 97.8 98.3 98.3 98.3

Table 5: Comparison between STL and MTL+fine-tuning across all tasks. blue↑ indicates results better than STL,
red↓ indicates worse, and black means almost the same (i.e., a difference within 0.5). Constituency parsing requires
more memory than other tasks so we restrict its span length to 10 in MTL, and thus do not report results.

their similarity using the Frobenius norm:

simk(t, t′) = − 1

|Xt|
∑
x∈Xt

∥∥∥At
k(x)−At′

k (x)
∥∥∥
F
,

where At
k(x) is the attention map extracted from

the k-th head by running the model trained from
task t on sentence x. We select OpenIE as the target
task because it shows the largest performance vari-
ation when paired with different source tasks (34.0
- 38.8) in Table 6. We visualize the attention simi-
larity of all heads in BERT (12 layers × 12 heads)
between two mutually harmful tasks (OpenIE/POS
on the left) and between two mutually helpful tasks
(OpenIE/SRL on the right) in Figure 2a. A com-
mon trend is that heads in higher layers exhibit
more divergence, probably because they are closer
to the prediction layer, thus easier to be affected
by the end task. Overall, it can be seen that Ope-
nIE/POS has much more attention divergence than
OpenIE/SRL. A notable difference is that almost
all heads in the last two layers of the OpenIE/POS
models differ significantly, while some heads in
the last two layers of the OpenIE/SRL models still
behave similarly, providing evidence that failure
of MTL can be attributed to the fact that dissimi-
lar tasks requires different attention patterns. We
further compute average attention similarities for
all source tasks in Figure 2b, and we can see that
there is a strong correlation (Pearson correlation
of 0.97) between the attentions similarity and the
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(a) Attention similarity between
OpenIE/POS (left), and between
OpenIE/SRL (right) for all heads.
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Figure 2: Attention-based task relatedness analysis.

performance of pairwise MTL, supporting our hy-
pothesis that attention pattern similarities can be
used to predict improvements of MTL.

MTL under Different Settings We analyze how
token representations and sizes of the target dataset
affect the performance of MTL. Comparing BERT
and GloVe in Table 6, the improvements become
smaller or vanish as the token representation be-
comes stronger, e.g., improvement on OpenIE with
SRL reduces from 5.8 to 1.6. This is expected be-
cause both large-scale pre-training and MTL aim to
learn general representations and their benefits tend
to overlap in practice. Interestingly, some helpful
source tasks become harmful when we shift from
GloVe to BERT, such as OpenIE paired with POS.
We conjecture that the gains of MTL might have al-
ready been achieved by BERT, but the task-specific
characteristics of POS hurt the performance of Ope-
nIE. We did not observe many tasks benefitting
from MTL for the GloVe-based model in Table 5
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GloVe BERTbase

Target
Source STL POS NER Consti. Dep. SRL STL POS NER Consti. Dep. SRL

OpenIE 28.3 29.9↑ 27.0↓ 31.2↑ 32.9↑ 34.1↑ 36.7 34.0↓ 34.3↓ 35.2↓ 37.8↑ 38.3↑
NER (WLP) 77.6 77.8 78.3↑ 77.9 78.6↑ 78.1↑ 78.1 78.0 78.1 78.1 77.7 78.8↑
RE (WLP) 64.9 65.5↑ 65.6↑ 64.9 66.5↑ 65.9↑ 64.7 64.4 64.7 64.3 64.9 65.3↑

RE (SemEval10) 50.7 52.3↑ 52.8↑ 49.6↓ 52.9↑ 52.8↑ 61.7 61.9 60.2↓ 59.2↓ 62.1 59.9↓
ABSA 63.5 63.4 62.8↓ 59.8↓ 63.5 60.2↓ 70.8 68.9↓ 71.4↑ 70.4 69.9↓ 69.6↓
ORL 38.2 35.7↓ 37.9 36.1↓ 38.6 41.0↑ 44.5 45.8↑ 44.2 44.8 45.1↑ 46.6↑

SRL (10k) 68.8 69.6↑ 68.9 70.7↑ 71.3↑ - 78.7 79.4↑ 79.5↑ 79.6↑ 79.8↑ -

Table 6: Performance of pairwise multi-task learning with GloVe and BERTbase. blue↑
indicates results better than STL, red↓ indicates worse, and black means almost the same
(i.e., a difference within 0.5). We show the performance after fine-tuning. Dataset of
source tasks POS, Consti., Dep. is PTB and dataset of NER is CoNLL-2003.
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Figure 3: MTL Perfor-
mance of SRL wrt. the
data size.

because it is trained on all tasks (instead of two),
which is beyond its limited model capacity. The im-
provements of MTL shrink as the size of the SRL
datasets increases, as shown in Figure 3, indicating
that MTL is useful when the target data is sparse.

Time Complexity Analysis Time complexities
of span and relation prediction are O(l · n) and
O(K2) = O(τ2 · n2) respectively for a sentence
of n tokens (Section 3). The time complexity
of BERT is O(L · n2), dominated by its L self-
attention layers. Since the pruning threshold τ is
usually less than 1, the computational overhead in-
troduced by the span-relation output layer is much
less than BERT. In practice, we observe that the
training/testing time is mainly spent by BERT. For
SRL, one of the most computation-intensive tasks
with long spans and dense span/relation annota-
tions, 85.5% of the time is spent by BERT. For
POS, a less heavy task, the time spent by BERT
increases to 98.5%. Another option for span pre-
diction is to formulate it as a sequence labeling
task, as in previous works (Lample et al., 2016;
He et al., 2017), where time complexity is O(n).
Although slower than token-based labeling models,
span-based models offer the advantages of being
able to model overlapping spans and use span-level
information for label prediction (Lee et al., 2017).

5 Related Work

General Architectures for NLP There has been
a rising interest in developing general architectures
for different NLP tasks, with the most prominent
examples being sequence labeling framework (Col-
lobert et al., 2011; Ma and Hovy, 2016) used for
tagging tasks and sequence-to-sequence framework
(Sutskever et al., 2014) used for generation tasks.
Moreover, researchers typically pick related tasks,

motivated by either linguistic insights or empiri-
cal results, and create a general framework to per-
form MTL, several of which are summarized in
Table 1. For example, Swayamdipta et al. (2018)
and Strubell et al. (2018) use constituency and
dependency parsing to improve SRL. Luan et al.
(2018, 2019); Wadden et al. (2019) use a span-
based model to jointly solve three information-
extraction-related tasks (NER, RE, and Coref.). Li
et al. (2019) formulate both nested NER and flat
NER as a machine reading comprehension task.
Compared to existing works, we aim to create an
output representation that can solve nearly every
natural language analysis task in one fell swoop,
allowing us to cover a far broader range of tasks
with a single model.

In addition, NLP has seen a recent burgeoning
of contextualized representations pre-trained on
large corpora (e.g., ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019)). These methods focus
on learning generic input representations, but are
agnostic to the output representation, requiring dif-
ferent predictors for different tasks. In contrast, we
present a methodology to formulate the output of
different tasks in a unified format. Thus our work is
orthogonal to those on contextualized embeddings.
Indeed, in Section 4.3, we demonstrate that the
SpanRel model can benefit from stronger contex-
tualized representation models, and even provide a
testbed for their use in natural language analysis.

Benchmarks for Evaluating Natural Language
Understanding Due to the rapid development of
NLP models, large-scale benchmarks, such as Sen-
tEval (Conneau and Kiela, 2018), GLUE (Wang
et al., 2019b), and SuperGLUE (Wang et al., 2019a)
have been proposed to facilitate fast and holistic
evaluation of models’ understanding ability. They
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mainly focus on sentence-level tasks, such as nat-
ural language inference, while our GLAD bench-
mark focuses on token/phrase-level analysis tasks
with diverse coverage of different linguistic struc-
tures. New tasks and datasets can be conveniently
added to our benchmark as long as they are in the
BRAT standoff format, which is one of the most
commonly used data format in the NLP community,
e.g., it has been used in the BioNLP shared tasks
(Kim et al., 2009) and the Universal Dependency
project (McDonald et al., 2013).

6 Conclusion

We provide the simple insight that a large number
of natural language analysis tasks can be repre-
sented in a single format consisting of spans and
relations between spans. As a result, these tasks
can be solved in a single modeling framework that
first extracts spans and predicts their labels, then
predicts relations between spans. We attempted 10
tasks with this SpanRel model and show that this
generic task-independent model can achieve com-
petitive performance as state-of-the-art methods
tailored for each tasks. We merge 8 datasets into
our GLAD benchmark for evaluating future models
for natural language analysis. Future directions in-
clude (1) devising hierarchical span representations
that can handle spans of different length and diverse
content more effectively and efficiently; (2) robust
multitask learning or meta-learning algorithms that
can reconcile very different tasks.
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A Detailed Explanations of 10 Tasks

• Span-oriented Tasks (Table 2a)

– Named Entity Recognition (Sang and Meul-
der, 2003) NER is traditionally considered as
a sequence labeling task. We model named
entities as spans over one or more tokens.

– Constituency Parsing (Collins, 1997) Con-
stituency parsing aims to produce a syntactic
parse tree for each sentence. Each node in
the tree is an individual span associated with a
constituent label, and spans are nested.

– Part-of-speech Tagging (Ratnaparkhi, 1996;
Toutanova et al., 2003) POS tagging is another
sequence labeling task, where every single to-
ken is an individual span with a POS tag.

– Aspect-based Sentiment Analysis (Pontiki
et al., 2014) ABSA is a task that consists of
identifying certain spans as aspect terms and
predicting their associated sentiments.

• Relation-oriented Tasks (Table 2b)

– Relation Extraction (Hendrickx et al., 2010)
RE concerns the relation between two entities.

– Coreference (Pradhan et al., 2012) Corefer-
ence resolution is to link named, nominal, and
pronominal mentions that refer to the same
concept, within or beyond a single sentence.

– Semantic Role Labeling (Gildea and Juraf-
sky, 2002) SRL aims to identify arguments of
a predicate (verb or noun) and classify them
with semantic roles in relation to the predicate.

– Open Information Extraction (Banko et al.,
2007; Niklaus et al., 2018) In contrast to the
fixed relation types in RE, OpenIE aims to ex-
tract open-domain predicates and their argu-
ments (usually subjects and objects) from a
sentence.

– Dependency Parsing (Kübler et al., 2009)
Spans are single-word tokens and a relation
links a word to its syntactic parent with the
corresponding dependency type.

– Opinion Role Labeling (Yang and Cardie,
2013) ORL detects spans that are opinion ex-
pressions, as well as holders and targets related
to these opinions.

B Results of BERT Large Model

Table 7 shows the performance of single-task learn-
ing with different token representations. BERTlarge
achieves the best performance on most of the tasks.
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Category Task Metric Dataset GloVe ELMo BERTbase SpanBERTbase BERTlarge

IE

NER F1
CoNLL03 88.4 91.9 91.0 91.3 90.9

WLP 77.6 79.2 78.1 77.9 78.3

RE F1
SemEval10 50.7 61.8 61.7 62.1 64.7

WLP 64.9 65.5 64.7 64.1 65.1

Coref Avg F1 OntoNotes 56.3 62.2 66.3 70.0 -

OpenIE F1 OIE2016 28.3 35.2 36.7 36.5 36.5

SRL F1 OntoNotes 78.0 82.4 83.3 83.1 84.4

Parsing
Dep. LAS

PTB 92.9 94.7 94.9 95.1 95.3
OntoNotes 90.4 92.3 94.1 94.2 94.5

Consti. Evalb F1
PTB 93.4 95.3 95.5 95.8 95.8

OntoNotes 91.0 93.2 93.6 94.3 93.9

Sentiment
ABSA F1 SemEval14 63.5 69.2 70.8 70.0 73.8

ORL F1 MPQA 3.0 38.2 42.9 44.5 45.2 47.1

POS Accuracy
PTB 96.8 97.7 97.6 97.6 97.4

OntoNotes 97.0 98.2 97.7 98.3 97.9

Table 7: Single-task learning performance of the SpanRel model with different token representations. BERTlarge
requires a large amount of memory so we cannot feed the entire document to the model in coreference resolution.

Information Extraction POS Parsing SRL Sentiment
NER RE Coref. OpenIE Dep. Consti. ABSA ORL

max span length l 10 5 10 30 1 1 - 30 10 30
pruning ratio τ - 5 0.4 0.8 - 1.0 - 1.0 - 0.3

Table 8: Task-specific hyperparameters. Span-oriented tasks do not need pruning ratio.

C Task-specific Hyperparameters

As shown in Table 8, a larger maximum span length
is used for tasks with longer spans (e.g., OpenIE),
and a larger pruning ratio is used for tasks with
more spans (e.g., SRL). Constituency parsing does
not have span length limit because spans can be as
long as the entire sentence. Since relation extrac-
tion aims to extract exactly two entities and their
relation from a sentence, we keep pruning ratio
fixed (top 5 spans in this case) regardless of the
length of the sentence.


