
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 350–361
July 5 - July 10, 2020. c©2020 Association for Computational Linguistics

350

NSTM: Real-Time Query-Driven News Overview Composition at
Bloomberg

Joshua Bambrick1, Minjie Xu1, Andy Almonte1, Igor Malioutov1,
Guim Perarnau1, Vittorio Selo1, Iat Chong Chan2, ∗

1Bloomberg, London, United Kingdom
2OakNorth, London, United Kingdom

1{jbambrick7,mxu161,aalmonte2,imalioutov,gperarnau,vselo}@bloomberg.net
2iat.chan@oaknorth.com

Abstract

Millions of news articles from hundreds of
thousands of sources around the globe appear
in news aggregators every day. Consuming
such a volume of news presents an almost
insurmountable challenge. For example, a
reader searching on Bloomberg’s system for
news about the U.K. would find 10,000 arti-
cles on a typical day. Apple Inc., the world’s
most journalistically covered company, gar-
ners around 1,800 news articles a day.

We realized that a new kind of summarization
engine was needed, one that would condense
large volumes of news into short, easy to ab-
sorb points. The system would filter out noise
and duplicates to identify and summarize key
news about companies, countries or markets.

When given a user query, Bloomberg’s solu-
tion, Key News Themes (or NSTM), leverages
state-of-the-art semantic clustering techniques
and novel summarization methods to produce
comprehensive, yet concise, digests to dramat-
ically simplify the news consumption process.

NSTM is available to hundreds of thousands of
readers around the world and serves thousands
of requests daily with sub-second latency. At
ACL 2020, we will present a demo of NSTM.

1 Introduction

In many domains, finding contextually-important
news as fast as possible is a key goal. With millions
of articles published around the globe each day,
quickly finding relevant and actionable news can
mean the difference between success and failure.

When provided with a search query, a traditional
system returns links to articles sorted by relevance.
However, users typically encounter (near) duplicate
or overlapping articles, making it hard to quickly
identify key events and easy to miss less-reported

∗Order reflects writing contributions; M.X., I.C.C., and
J.B. designed and developed a prototype of the system; All
implemented the production system; A.A. managed the project.
I.C.C. worked on the project while employed by Bloomberg.

stories. Moreover, news headlines are frequently
sensational, opaque, or verbose, forcing readers to
open and read individual articles.

For illustration, imagine an analyst sees the price
of Amazon.com stock drop and wants to know why.
With a traditional system, they would search for
news on the company and wade through many sto-
ries (307 in this case1), often with duplicate infor-
mation or unhelpful headlines, to slowly build up a
full picture of what the key events were.

By contrast, using NSTM (Key News Themes),
this same analyst can search for ‘Amazon.com’,
over a given time horizon, and promptly receive a
concise and comprehensive overview of the news,
as shown in Fig. 1. We tackle the challenges in-
volved with consuming vast quantities of news by
leveraging modern techniques to semantically clus-
ter stories, as well as innovative summarization
methods to extract succinct, informational sum-
maries for each cluster. A handful of key stories are
then selected from each cluster. We define a (story
cluster, summary, key stories) triple as one theme
and an ordered list of themes as an overview.

NSTM works at web scale but responds to ar-
bitrary user queries with sub-second latency. It is
deployed to hundreds of thousands of users around
the globe and serves thousands of requests per day.

2 Design Goals

We focus on the scenario where a news search
query can render many matching news articles,
from tens up to hundreds of thousands. The task is
to create a succinct overview of the results to help
our users to easily grasp the gist of them without
combing through the individual articles.

Since the matching articles often cover various
aspects and events, NSTM must first cluster related
stories to form a clear separation among them.

Furthermore, the system must extract a concise

1The corresponding overview can be found in Appendix C.

351

Search box Summary Cluster size Total search results

Key stories Feedback buttons

Time period selection

Source Publication date

Figure 1: A query-based UI for NSTM showing two themes. The un-cropped screenshot is in Appendix C.

(up to 50 characters, or roughly 6 tokens) summary
for each cluster. It needs to be short enough to
be understandable to humans with a single glance,
but also rich enough to retain critical details from a
minimal ‘who-does-what’ stub, so the most popular
noun phrase or entity alone will not suffice. Such
conciseness also helps when screen space is limited
(for context-driven applications or mobile devices).

From each cluster, NSTM must surface a few key
stories to provide a sample of its contents. The clus-
ters themselves should also be ranked to highlight
the most important few in limited screen space.

Finally, the system must be fast. It may only
take up to a few seconds for the slowest queries.

Main technical challenges: 1) There is no pub-
lic dataset corresponding to this overview composi-
tion problem with all the requirements set above, so
we were required to either define new (sub-)tasks
and collect new annotations, or select techniques
by intuition, implement them, and iterate on feed-
back; 2) Generating summaries which are simulta-
neously accurate, informational, fluent, and highly
concise necessitates careful and innovative choices
of summarization techniques; 3) Supporting arbi-
trary user searches in real-time places significant
performance requirements on the system whilst
also setting a high bar for its robustness.

3 Related Work

A comparable system is Google News’ ‘Full Cover-
age’ feature2, which groups stories from different
sources, akin to our clustering approach. However,
it doesn’t offer summarization and its clustered
view is unavailable for arbitrary search queries.

SUMMA (Liepins et al., 2017) is another com-
parable system which integrates a variety of NLP
components and provides support for numerous
media and languages, to simultaneously monitor

2https://www.blog.google/products/news/new-google-
news-ai-meets-human-intelligence/

several media broadcasts. SUMMA applies the
online clustering algorithm by Aggarwal and Yu
(2006) and the extractive summarization algorithm
by Almeida and Martins (2013). In contrast to
NSTM, SUMMA focuses on scenarios with contin-
uous multimedia and multilingual data streams and
produces much longer summaries.

4 Approach

4.1 Architecture
The functionality of NSTM can be formulated
as: given a search query, generate a ranked list
(overview) of the key themes, or (news cluster, sum-
mary, key stories) triples, that concisely represent
the most important matching news events.

Fig. 2 depicts the system’s architecture. The
story ingestion service processes millions of pub-
lished news stories each day, stores them in a search
index, and applies online clustering to them. When
a search query is submitted via a user interface (1©
in the diagram), the overview composition service
retrieves matching stories and their associated on-
line cluster IDs from the search index (2©). The
system then further clusters the retrieved online
clusters into the final clusters, each correspond-
ing to one theme (3©). For each such cluster, the
system extracts a concise summary and a handful
of key stories to reflect the cluster’s contents (4©).
This creates a set of themes, which NSTM ranks to
create the final overview. Lastly, the system caches
the overview for a limited time to support future
reuse (5©) before returning it to the UI (6©).

4.2 News Search
The first step in the NSTM pipeline is to retrieve
relevant news stories (1© in Fig. 2), for which we
leverage a customized in-house news search engine
based on Apache Solr.3 This supports searches
based on keywords, metadata (such as news source

3http://lucene.apache.org/solr/

352

Overview composition service

③ Cluster search
results① Send search query

⑥ Return overview

④ Summarize
clusters

Search index

② Retrieve stories &
online cluster IDs

Real-time stream
of news stories

⑤ Cache
overview

User interface

Story ingestion service

Index & cluster stories
Cache

Figure 2: The architecture of NSTM. The digits indicate the order of execution whenever a new request is made.

and time of ingestion), and tags generated during
ingestion (such as topics, regions, securities, and
people). For example, TOPIC:ECOM AND NOT
COMPANY:AMZN4 will retrieve all news about ‘E-
commerce’ but exclude Amazon.com.

NSTM uses Solr’s facet functionality to surface
the largest k online clusters (detailed in Sec. 4.3.2)
in the search results, before returning n stories from
each. This tiered approach offers better coverage
and scalability than direct story retrieval.

4.3 Clustering

4.3.1 News Embedding and Similarity
At the core of any clustering system is a similar-
ity metric. In NSTM, we define the similarity be-
tween two articles as the cosine similarity between
their embeddings as computed by NVDM (Miao
et al., 2016), i.e., τ(d1, d2) = 0.5(cos(z1, z2)+1),
where z ∈ Rn denotes the NVDM embedding.

Our choice is motivated by two observations: 1)
The generative model of NVDM is based on bag-
of-words (BoW) and P (w|z) = σ(W>z) where
σ is the softmax function, W ∈ Rn×V is the word
embedding matrix in the decoder and V is the size
of the vocabulary. This resembles the latent topic
structure popularized by LDA (Blei et al., 2003)
which has proven effective in capturing textual se-
mantics. Additionally, the use of cosine similarities
is naturally motivated by the fact that the genera-
tive model is directly defined by the dot-product
between the story embedding (z) and a shared vo-
cabulary embedding (W). 2) NVDM’s Variational
Autoencoder (VAE) (Kingma and Welling, 2014;
Rezende et al., 2014) framework makes the infer-
ence procedure much simpler than LDA and it also
supports decoder customizations. For example, it
allows us to easily integrate the idea of introducing

4This is Bloomberg’s internal news search query syntax,
which maps closely to the final query submitted to Solr.

a learnable common background word distribution
into the generative model (Arora et al., 2017).

We trained the model on an internal corpus of
1.85M news articles, using a vocabulary of size
about 200k and a latent dimension n of 128.

4.3.2 Clustering Stages
We divide clustering into two stages in the pipeline,
1) online incremental clustering at story ingestion
time, and 2) hierarchical agglomerative clustering
(HAC) at query time (3© in Fig. 2). The former is
used to produce query-agnostic online clusters at
a relatively low cost to handle the daily influx of
millions of news stories. These clusters reduce the
computational cost at query time. However, due
to its online nature, over-fragmentation, among
other quality issues, occurs in the resulting clusters.
This necessitates further refinement at query time
when an offline HAC step is performed on top of
the retrieved online clusters. A similar, but more
complicated, design was adopted in Vadrevu et al.
(2011) for clustering real-time news search results.

At both stages, we compute the cluster embed-
ding zc ∈ Rn as the mean of all the story em-
beddings therein, and evaluate similarities between
clusters (individual stories are taken as singleton
clusters) using the metric τ defined in Sec. 4.3.1.

For online clustering, we apply an in-house im-
plementation which uses a distributed pool of work-
ers to reduce latency and increase throughput. It
merges each incoming story with the closest cluster
if the similarity is within a parameterized threshold
and otherwise creates a new singleton cluster.

For HAC, we apply fastcluster5 (Müllner,
2013) to construct the dendrogram. We use com-
plete linkage to encourage more congruent clusters
and then form flat clusters by cutting the dendro-
gram at the same (height) threshold. To further

5https://www.jstatsoft.org/article/view/v053i09

353

reduce fragmentation where similar clusters are
left un-clustered, we apply HAC twice recursively.

To find a reasonable similarity threshold, we
manually annotated just over 1k pairs of news arti-
cles. Each annotator indicated whether they would
expect to see the articles grouped together or not
in an overview. We then selected the threshold
which achieved the highest F1 score on this binary
classification task, which was 0.86.

4.4 Summary Extraction

Clustering search results (Vadrevu et al., 2011) is a
meaningful step towards creating a useful overview.
With NSTM, we push this one step further by ad-
ditionally generating a concise, yet still human-
readable, summary for each cluster (4© in Fig. 2).

Due to the unique style of the summary ex-
plained in Sec. 2, the scarcity of training data makes
it hard to train an end-to-end seq2seq (Sutskever
et al., 2014) model, as is typical for abstractive sum-
marization. Also, this technique would only offer
limited control over the output. Hence, we opt for
an extractive method, leveraging OpenIE (Banko
et al., 2007) and a BERT-based (Devlin et al., 2019)
sentence compressor (both illustrated in Fig. 3) to
surface a pool of sub-sentence-level candidate sum-
maries from the headline and the body, which are
then scored by a ranker.

4.4.1 OpenIE-based Tuple Extraction

Open Domain Information Extraction (OpenIE)
presents an unsupervised approach to extract sum-
mary candidates from an input sentence.

First, we construct a dependency parse tree of
the sentence, using a model based on Kiperwasser
and Goldberg (2016) (1© in Fig. 3).

From this tree, we extract predicate-argument n-
tuples using an adapted reimplementation of Pred-
Patt (White et al., 2016) (2©). The tuples represent
nested proto-semantic parses of the sentence, and
typically correspond to well-formed phrases. This
method applies rules cast over Universal Depen-
dencies (Nivre et al., 2016) so syntactic patterns
are unlexicalized and language-neutral.

We then prune these tuples (3©), applying rules
which reduce the arguments to their syntactic heads,
while heuristics keep named entities and multi-
word expressions intact. We recursively intersect
the resulting tuples to create more tuples.

Finally, to render summary candidates, we create
a titlecased surface form of each tuple (4©).

4.4.2 BERT-based Sentence Compression
In addition to the rule-based OpenIE system, we
apply a Transfer Learning-based solution, using a
novel in-house dataset specific to our sub-task. In
particular, we model candidate summary extraction
as a ‘sentence compression’ task (Filippova et al.,
2015), where each story is split into sentences and
tokens are classified as keep or delete to make each
sentence shorter, while retaining the key message.

We oversaw the manual annotation of a dataset
which maps sentences to compressed equivalents
that correspond to summaries. When presented
with a news story, annotators selected one sentence
and deleted words to create a high quality summary.
This rendered 10k annotations which we randomly
partitioned into train (80%) and test (20%) sets.

The task is formulated as sequence tagging,
whereby each sub-token (1© in Fig. 3), defined
using the BERT vocabulary, is classified as keep or
delete (2©). We implement this using a feedforward
layer on top of a Bloomberg-internal pre-trained
neural network, akin to the uncased English BERT-
Base model, applying an adapted implementation.

To create a compression, we stitch sub-tokens
labelled keep together (3©). Lastly, we use postpro-
cessing rules to improve formatting (4©), such as
titlecasing and fixing partial-entity deletion (where
only some sub-tokens of a token/entity are deleted).

4.4.3 Summary Candidate Ranking
Tuple generation and sentence compression pro-
vide a pool of summary candidates for individ-
ual news stories. These are further aggregated
across stories within a cluster to form the final
pool. To identify the best summary for the cluster,
we trained a sequence-pair model sθ(a, c) to score
each candidate c given an article a. Such article-
level scores for a candidate are computed against
all the stories in a cluster and then aggregated (e.g.,
averaged) to produce the final cluster-level scores,
which we use for ranking.

For this purpose, we collected an in-house anno-
tated dataset. We sampled a few thousand news ar-
ticles and generated 33k summary candidates from
them using OpenIE,6. Then we asked internal anno-
tators to label each as Great, Acceptable or Terrible
were it to be used as a summary for the article, con-
sidering both readability and informativeness.

From this dataset, we constructed about 48k pair-
wise samples (c, c′)|a where c is labelled more

6At this time, we hadn’t considered sentence compression.

354

Automaker ST is investing $2B in electric vehicles (EVs), atoning for the 2018 scandal

① Parse dependencies (shown cropped)

② Extract pred-arg n-tuples (1 output shown)

③ Prune tuples (1 output shown)

④ Create surface form

① Create sub-tokens

② Classify sub-tokens

③ Stitch sub-tokens (with score greater than 0.5)

④ Postprocess

(atoning, Automaker ST, for the 2018 scandal)
 PRED ARG ARG

['automaker’, ‘ST’, 'is', 'investing', '$', '2', ‘##B’, …]

ST Atoning For 2018 Scandal

st investing 2b in evs

ST Investing $2B in EVs
OpenIE Pipeline BERT-based Sentence Compression Pipeline

(atoning, ST, for 2018 scandal)
 PRED ARG ARG

[0.3, 0.8, 0.2, 0.8, 0.4, 0.6, 0.8, …]

Figure 3: Illustrations of the symbolic OpenIE (left) and neural sentence compression (right) candidate extraction
pipelines. We apply both, to render a diverse pool of candidate summaries, and use a ranker to select the best.

favorably than c′ for a given common article a,
and the model sθ(a, c) was then trained to match
such preferences using pairwise margin loss, i.e.,
max(0, 1− sθ(a, c) + sθ(a, c

′)).
We considered a few models, including a

parameter-free baseline which scores candidate-
article pairs as the dot-product of their NVDM
(Sec. 4.3.1) embeddings, i.e., s = z>a zc. We
also considered this model’s bilinear extension
s = z>a Wzc where W is the learnable weight ma-
trix. Lastly, we tried neural network models, such
as DecAtt (Parikh et al., 2016). We evaluated these
models on a held-out test set with metrics such as
pairwise ranking accuracy and NDCG. We opted
to productionize the baseline model, since it was
the simplest and performed on par with the others.7

Because NVDM uses a bag-of-words model, this
ranker ignores syntax entirely. We believe that its
empirical success owes to both the well-formedness
of the majority of the candidates and the averaging
effect that amplifies the ‘signal-noise ratio’ when
the scores are averaged over the cluster.

Empirically, this approach tends to surface ‘in-
formational’ summaries, in contrast to headlines
which are often ‘sensational’. We posit that this
is because high-ranked summaries must also be
representative of story bodies, not just headlines.

4.4.4 Combining Summary Candidates

OpenIE and sentence compression offer distinct
ways to extract candidates, and we experimented
with each as the sole source of summary candi-
dates in our pipeline. On the basis of ROUGE

7E.g., with NDCG5, the (untrained) NVDM dot-product
yields 0.61, while the bilinear model and DecAtt yield 0.64.

scores (Lin and Hovy, 2003; Lin, 2004) (details in
Appendix B), the latter provides superior results.

However, in a production system which informs
business decisions, we must consider factors which
aren’t readily captured by metrics which compare
generated and ‘gold’ outputs. For example, chang-
ing a single word can reverse the meaning of a
summary, with only a small change in such scores.
Hence, we consider a range of pros and cons.

The sentence compression method is supervised
and is trained to produce summaries which can
take advantage of news-specific grammatical styles.
However, the OpenIE system is much faster and
offers greater interpretability and controllability.

Since the neural and symbolic systems provide
different advantages, we apply both. This renders
a diverse pool of candidate summaries from which
the ranker’s task is to select the best. At the pool-
ing stage we also impose a length constraint of 50
characters and exclude any longer candidates.

4.5 Key Story Selection

As a sample from the full story cluster, NSTM se-
lects an ordered list of key stories which are deemed
to be representative. We select these using a heuris-
tic based on intuition and client feedback.

Our approach is to re-cluster all stories in the
cluster using HAC (see Sec. 4.3.2), to create a
parameterized number of sub-clusters. For each
sub-cluster, we select the story that has maximum
average similarity τ (as per Sec. 4.3.1) to the other
sub-cluster stories. This strategy is intended to se-
lect stories which represent each cluster’s diversity.

We sort the key stories by sub-cluster size and
time of ingestion, in that order of precedence.

355

4.6 Theme Ranking
We have described how (story cluster, summary,
key stories) triples, or themes, are created. How-
ever, some themes are considered to be more im-
portant than others since they are more useful to
readers. It is tricky to define this concept concretely
but we apply proxy metrics in order to estimate an
importance score for each theme. We rank themes
by this score and, in order to save screen space, re-
turn only the top few (‘key’) themes as an overview.

The main factor considered in the importance
score is the size of the story cluster – the larger
the cluster, the larger the score. This heuristic cor-
responds to the observation that more important
themes tend to be reported on more frequently. Ad-
ditionally, we consider the entropy of the news
sources in the cluster, which corresponds to the ob-
servation that more important themes are reported
on by a larger number of publishers and reduces
the impact of a source publishing duplicate stories.

4.7 Caching
Since many user requests are the same or use sim-
ilar data, caching is useful to minimize response
times. When NSTM receives a request, it checks
whether there is a corresponding overview in the
cache, and immediately returns it if so. 99.6% of
requests hit the cache and 99% of requests are han-
dled within 215ms.8 In the event of a cache miss,
NSTM responds in a median time of 723ms.9

We apply two mechanisms to ensure cache fresh-
ness. Firstly, we preemptively invoke NSTM us-
ing requests that are likely to be queried by users
(e.g., most read topics) and re-compose them from
scratch at fixed intervals (e.g., every 30 min). Once
computed, they are cached. The second mecha-
nism is user-driven: every time a user requests an
overview which is not cached, it will be created and
added to the cache. The system will subsequently
preemptively invoke NSTM using this request for
a fixed period of time (e.g., 24 hours).

5 Demonstration

NSTM was deployed to our clients in 2019. Using
the UI depicted in Fig. 1, users can find overviews
for customized queries to help support their work.
From this screen, the user can enter a search query
using any combination of Boolean logic with tag-
or keyword-based terms. They may also alter the

8Computed for all requests over a 90-day period.
9Computed for the top 50 searches over a 7-day period.

Summary Size

1 Facebook to Settle Recognition Privacy Lawsuit 90
2 Facebook Warns Revenue Growth Slowing 79
3 Facebook Stock Drops 7% Despite Earnings Beat 70
4 Facebook to Remove Coronavirus Misinformation 49
5 Mark Zuckerberg to Launch WhatsApp Payments 19

Table 1: Ranked theme summaries and cluster sizes for
‘Facebook’ (1,176 matching stories) from 31 Jan. 2020.

Summary Size

1 Britain to Leave the EU 459
2 Bank of England Would Keep Interest Rate Unchanged 141
3 Sturgeon Demands Scottish Independence Vote 71
4 Pompeo in UK for Trade Talks 45
5 Boris Johnson Hails ‘Beginning’ on Brexit Day 63

Table 2: Ranked theme summaries and cluster sizes for
‘U.K.’ (13,858 matching stories) from 31 Jan. 2020.

period that the overview is calculated over (this UI
offers 1 hour, 8 hour, 1 day, and 2 day options).

This interface also allows users to provide feed-
back via the ‘thumb’ icons or plain-text comments.
Of several hundred per-overview feedback submis-
sions, over three quarters have been positive.

Tables 1 and 2 show example theme summaries
generated for the queries ‘Facebook’ and ‘U.K.’.
Note that the summaries are quite different from
what has previously been studied by the NLP com-
munity (in terms of brevity and grammatical style)
and that they accurately represent distinct events.

In addition to user-driven settings, NSTM can
be used to supplement context-driven applications.
One example, demonstrated in Appendix D, uses
themes provided by NSTM to help explain why
companies or topics are ‘trending’.

6 Conclusion

We presented NSTM, a novel and production-ready
system that composes concise and human-readable
news overviews given arbitrary user search queries.

NSTM is the first of its kind; it is query-driven,
it offers unique news overviews which leverage
clustering and succinct summarization, and it has
been released to hundreds of thousands of users.

We also demonstrated effective adoption of mod-
ern NLP techniques and advances in the design and
implementation of the system, which we believe
will be of interest to the community.

There are many open questions which we intend
to research, such as whether autoregressivity in
neural sentence compression can be exploited and
how to compose themes over longer time periods.

356

References
Charu C Aggarwal and Philip S Yu. 2006. A frame-

work for clustering massive text and categorical data
streams. In Proceedings of the 2006 SIAM Interna-
tional Conference on Data Mining, pages 479–483.
SIAM.

Miguel Almeida and André Martins. 2013. Fast and ro-
bust compressive summarization with dual decom-
position and multi-task learning. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), pages 196–206, Sofia, Bulgaria. Association
for Computational Linguistics.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In Proceedings of the 5th International
Conference on Learning Representations, ICLR’17.
OpenReview.net.

Michele Banko, Michael J. Cafarella, Stephen Soder-
land, Matt Broadhead, and Oren Etzioni. 2007.
Open information extraction from the web. In Pro-
ceedings of the 20th International Joint Conference
on Artifical Intelligence, IJCAI’07, page 2670–2676,
San Francisco, CA, USA. Morgan Kaufmann Pub-
lishers Inc.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Katja Filippova, Enrique Alfonseca, Carlos A. Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with LSTMs. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
360–368, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Renars Liepins, Ulrich Germann, Guntis Barzdins,
Alexandra Birch, Steve Renals, Susanne Weber,

Peggy van der Kreeft, Hervé Bourlard, João Pri-
eto, Ondřej Klejch, Peter Bell, Alexandros Lazaridis,
Alfonso Mendes, Sebastian Riedel, Mariana S. C.
Almeida, Pedro Balage, Shay B. Cohen, Tomasz
Dwojak, Philip N. Garner, Andreas Giefer, Marcin
Junczys-Dowmunt, Hina Imran, David Nogueira,
Ahmed Ali, Sebastião Miranda, Andrei Popescu-
Belis, Lesly Miculicich Werlen, Nikos Papasaran-
topoulos, Abiola Obamuyide, Clive Jones, Fahim
Dalvi, Andreas Vlachos, Yang Wang, Sibo Tong,
Rico Sennrich, Nikolaos Pappas, Shashi Narayan,
Marco Damonte, Nadir Durrani, Sameer Khurana,
Ahmed Abdelali, Hassan Sajjad, Stephan Vogel,
David Sheppey, Chris Hernon, and Jeff Mitchell.
2017. The SUMMA platform prototype. In Pro-
ceedings of the Software Demonstrations of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 116–119,
Valencia, Spain. Association for Computational Lin-
guistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003 Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 150–157.

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural
variational inference for text processing. In Proceed-
ings of the 33rd International Conference on Inter-
national Conference on Machine Learning - Volume
48, ICML’16, pages 1727–1736. JMLR.org.

Daniel Müllner. 2013. fastcluster: Fast hierarchical,
agglomerative clustering routines for R and Python.
Journal of Statistical Software, Articles, 53(9):1–18.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
v1: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659–1666.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2249–2255,
Austin, Texas. Association for Computational Lin-
guistics.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. 2014. Stochastic backpropagation and ap-
proximate inference in deep generative models. In
Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-
26 June 2014, pages 1278–1286.

https://www.aclweb.org/anthology/P13-1020
https://www.aclweb.org/anthology/P13-1020
https://www.aclweb.org/anthology/P13-1020
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://doi.org/http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D15-1042
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://www.aclweb.org/anthology/E17-3029
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/N03-1020
https://www.aclweb.org/anthology/N03-1020
https://www.aclweb.org/anthology/N03-1020
http://dl.acm.org/citation.cfm?id=3045390.3045573
http://dl.acm.org/citation.cfm?id=3045390.3045573
https://doi.org/10.18637/jss.v053.i09
https://doi.org/10.18637/jss.v053.i09
https://doi.org/10.18653/v1/D16-1244
https://doi.org/10.18653/v1/D16-1244
http://proceedings.mlr.press/v32/rezende14.html
http://proceedings.mlr.press/v32/rezende14.html

357

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Informa-
tion Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 3104–3112.

Srinivas Vadrevu, Choon Hui Teo, Suju Rajan, Kunal
Punera, Byron Dom, Alexander J. Smola, Yi Chang,
and Zhaohui Zheng. 2011. Scalable clustering of
news search results. In Proceedings of the Fourth
ACM International Conference on Web Search and
Data Mining, WSDM’11, pages 675–684, New
York, NY, USA. ACM.

Aaron Steven White, Drew Reisinger, Keisuke Sak-
aguchi, Tim Vieira, Sheng Zhang, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2016. Uni-
versal Decompositional Semantics on Universal De-
pendencies. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1713–1723, Austin, Texas. Association
for Computational Linguistics.

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
https://doi.org/10.1145/1935826.1935918
https://doi.org/10.1145/1935826.1935918
https://aclweb.org/anthology/D16-1177
https://aclweb.org/anthology/D16-1177
https://aclweb.org/anthology/D16-1177

358

A Acknowledgements

This has been a multi-year project, involving con-
tributions from many people at different stages.

In particular, we thank Miles Osborne, Marco
Ponza, Amanda Stent, Mohamed Yahya, Christoph
Teichmann, Prabhanjan Kambadur, Umut Topkara,
Ted Merz, Sam Brody, and Adrian Benton for re-
viewing and commenting on the manuscript; We
further thank Adela Quinones, Shaun Waters, Mark
Dimont, Ted Merz and other colleagues from the
News Product group for helping to shape the vi-
sion of the system; We also thank José Abarca
and his team for developing the user interface; We
thank Hady Elsahar for helping to improve sum-
mary ranking during his internship; Finally, we
thank all colleagues (especially those in the Global
Data department) who helped to produce high qual-
ity in-house annotations and all others who con-
tributed valuable thoughts and time into this work.

B End-To-End Evaluation

We evaluate the end-to-end NSTM system when
using the OpenIE (Sec. 4.4.1) and the BERT-based
sentence compression (Sec. 4.4.2) algorithms as the
sole source of candidate summaries. We also con-
ducted one experiment where both were used to cre-
ate a shared pool of candidates (as per Sec. 4.4.4).

We test the system end-to-end using the
manually-annotated Single Document Summariza-
tion (SDS) test set described in Sec. 4.4.2. To
implement SDS, our experimental setup assumes
that only one story was returned by a search request
(as per Sec. 4.2). We evaluate the output from each
system with ROUGE (Lin and Hovy, 2003; Lin,
2004)10. The results are presented in Table 3.

Metric OpenIE BSC Both

ROUGE-1 F1 0.831 0.863 0.851
ROUGE-2 F1 0.609 0.701 0.667
ROUGE-3 F1 0.530 0.640 0.599
ROUGE-4 F1 0.492 0.603 0.562
ROUGE-L F1 0.621 0.706 0.670

Table 3: ROUGE scores for the Single-Document Sum-
marization task in the end-to-end system, when using
OpenIE, BERT-based sentence compression (BSC) and
both to construct the pool of candidate summaries.

10https://github.com/google/seq2seq/blob/master/seq2seq/metrics/rouge.py

359

C Screenshots of A Query-Driven User Interface

Figure 4: Screenshot (taken on 29 January 2020) of a query-driven interface for NSTM showing the overview for
the company ‘Amazon.com’.

Figure 5: Screenshot (taken on 29 January 2020) of a query-driven interface for NSTM showing the overview for
the topic ‘Electric Vehicles’.

360

Figure 6: Screenshot (taken on 29 January 2020) of a query-driven interface for NSTM showing the overview for
the region ‘Canada’.

Figure 7: Screenshot (taken on 29 January 2020) of a query-driven interface for NSTM showing the overview for
a complex query, including a keyword.

361

D Screenshots of A Context-Driven User Interface

Figure 8: Screenshot (taken on 29 January 2020) of a context-driven application of NSTM. In the ‘Security’ column
are the companies that have seen the largest increase in news readership over the last day. Each entry in the ‘News
Summary’ column is the summary of the top theme provided by NSTM for the adjacent company.

Figure 9: Screenshot (taken on 29 January 2020) of a context-driven application of NSTM. In the ‘News Topic’
column are the topics that have seen the largest volume of news readership over the past 8 hours. Each entry in the
‘News Summary’ column is the summary of the top theme provided by NSTM for the adjacent topic.

