
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 95–100
July 5 - July 10, 2020. c©2020 Association for Computational Linguistics

95

BENTO: A Visual Platform for Building Clinical NLP Pipelines
Based on CodaLab

Yonghao Jin, Fei Li and Hong Yu
Department of Computer Science, University of Massachusetts

Lowell, MA, USA

Abstract

CodaLab1 is an open-source web-based plat-
form for collaborative computational research.
Although CodaLab has gained popularity in
the research community, its interface has lim-
ited support for creating reusable tools that
can be easily applied to new datasets and
composed into pipelines. In clinical domain,
natural language processing (NLP) on med-
ical notes generally involves multiple steps,
like tokenization, named entity recognition,
etc. Since these steps require different tools
which are usually scattered in different publi-
cations, it is not easy for researchers to use
them to process their own datasets. In this pa-
per, we present BENTO, a workflow manage-
ment platform with a graphic user interface
(GUI) that is built on top of CodaLab, to fa-
cilitate the process of building clinical NLP
pipelines. BENTO comes with a number of
clinical NLP tools that have been pre-trained
using medical notes and expert annotations
and can be readily used for various clinical
NLP tasks. It also allows researchers and de-
velopers to create their custom tools (e.g., pre-
trained NLP models) and use them in a con-
trolled and reproducible way. In addition, the
GUI interface enables researchers with limited
computer background to compose tools into
NLP pipelines and then apply the pipelines
on their own datasets in a “what you see is
what you get” (WYSIWYG) way. Although
BENTO is designed for clinical NLP applica-
tions, the underlying architecture is flexible to
be tailored to any other domains.

1 Introduction

With the machine learning research going deep,
computational models are becoming increasingly
large with intensive hyper-parameters tuning, mak-
ing the research difficult to reproduce. To tackle

1codalab.org

Figure 1: The architecture of BENTO. The BENTO
back end stores the description files of various tools
(e.g., pre-trained NLP models), processes static con-
tents of the application and handles compilation of the
user-defined pipelines. The CodaLab back end stores
the datasets (bundles) and executes computational jobs.
The two back end servers are brought behind a single
domain name using a reverse proxy server.

this problem, researchers have developed CodaLab
as an open-source platform for researchers and soft-
ware developers. However, CodaLab has limited
support for reusable tools that can be easily ap-
plied to different datasets and be composed into
computational pipelines.

Building pipelines is essential for the research
of certain domains. Take the medical informatics
research as an example, a complete NLP analysis
on medical notes often involves multiple steps like
tokenization, de-identification (Dernoncourt et al.,
2017; Liu et al., 2017), entity recognition (Li et al.,
2018; Xu et al., 2017; Jagannatha and Yu, 2016)
and normalization (Li et al., 2019, 2017; Cho et al.,
2017), relation extraction (Li et al., 2018; He et al.,
2019), etc. Since these steps require different tools
and these tools are usually scattered in different
publications, it is far from trivial to leverage these
tools on new datasets even though the authors have
released the source code. Therefore, we developed
a user-friendly workflow management platform,

https://codalab.org/


96

BiomEdical Nlp TOolkits (BENTO), to facilitate
the process of building and applying of clinical
NLP pipelines.

The architecture of BENTO is illustrated in
Figure 1. BENTO has three main components.
The web interface is supported by two back ends
brought together by a reverse-proxy server. The
CodaLab back end stores the datasets and exe-
cutes computational jobs. The BENTO back end
serves tool information and transforms user-defined
pipelines to CodaLab commands.

The advantages of such architecture are two-fold.
First, it is flexible to use CodaLab as the back end
for adding custom tools (e.g., pre-trained NLP mod-
els) and processing data in a controlled and repro-
ducible way. All the tools are containerized with
Docker2, which makes the platform to keep a uni-
fied interface to manage the models and not need
to maintain different operating environment for dif-
ferent models. Second, the web interface makes it
easier for users to construct NLP pipelines through
editing flowcharts and then apply the pipelines to
their data. The web-based architecture also makes
the platform widely accessible without complex
installation and configuration.

In this paper, we also show the examples of
using BENTO to integrate several clinical NLP
applications such as hypoglycemia detection (Jin
et al., 2019) and adverse drug event extraction (Li
et al., 2018), and build pipelines based on these
tools. BENTO helps build NLP pipelines, which
is a promising system to accelerate the medical
informatics research.

2 Related Work

Galaxy (Afgan et al., 2018) is a similar computa-
tional platform that is focused in bioinformatics and
computational biology, whose interface inspires the
design of ours. The main restriction of the Galaxy
platform is that users can only access the tools man-
aged by administrators and cannot define their own
tools. In linguistic research community, other re-
lated platforms include lingvis.io (El-Assady et al.,
2019), which is focused on integrating NLP oper-
ations with visualizations , and Argo (Rak et al.,
2012), a web-based text mining workbench based
on the UIMA framework. Stanford CoreNLP (Man-
ning et al., 2014) provides a commonly used NLP
tool set. On the library level, NLTK (Hardeniya
et al., 2016) is a popular Python library that inte-

2docker.com

grates multiple widely used NLP tools. OpenNLP
(Morton et al., 2005) is a Java library that provides
machine learning based toolkits for NLP tasks. Fu-
danNLP (Qiu et al., 2013) is a Java based library
which integrates the machine learning models and
datasets for Chinese NLP.

In the medical domain, NILE (Yu and Cai, 2013)
is a Java package which includes rule based NLP
methods for information extraction from medical
notes. Apache cTAKES (Apache cTAKES, 2018)
and CLAMP (Soysal et al., 2018) are two clinical
NLP systems with pipeline-based architecture in
the UIMA framework. Both systems have a graphi-
cal user interface, allowing users to build pipelines
from build-in UIMA components. However, the
UIMA framework has a steep learning curve. It is
also not widely used in the machine-learning-based
NLP research. Furthermore, most NLP applica-
tions are often released as command line programs.
Therefore, it is hard to extend applications that use
the UIMA framework with new models. In con-
trast, tools on our BENTO platform are based on
command line programs and users can easily define
their own tools with little restriction.

3 System Description

BENTO mainly comprises three parts: a front-end
web application, a BENTO back end server and a
CodaLab back end. As shown in Figure 1, BENTO
has a web-based user interface, from which users
can upload data, edit tools, submit jobs and perform
various other operations. The BENTO back end is a
web server that is mainly used for storing the tools,
including the user-defined ones, so they can be
accessed in different sessions. The CodaLab back
end is used for execution of each computational
job. When a tool is being executed, BENTO will
generate a series of CodaLab commands based on
the tool information and the input bundles. The
outputs of the tool are the run bundles generated
from those commands which can be passed on to
the down-stream tools and inspected by the users
on the CodaLab interface.

3.1 Web Interface

As shown in Figure 2, the user interface of our
platform is a web application that can be roughly
divided into three panels from left to right: tool
panel, canvas panel and worksheet panel. The tool
panel lists the current available tools on the plat-
form organized in a hierarchical file system struc-

https://www.docker.com/


97

Figure 2: BENTO Web Interface. The interface can be roughly divided into three parts from left to right: tool
panel, canvas panel and worksheet panel. The tool panel lists the current available tools organized in a tree view.
The canvas panel contains the flowchart of the current pipeline. Every node represents a tool or dataset and each
connection indicates the data flow in the pipeline.3 This figure shows an example of the pipeline for entity and
relation extraction. The worksheet panel displays the content of the CodaLab worksheet such as bundles and their
UUIDs.

ture along with the meta information. Users can
edit the User Tools folder using the buttons listed
on the top menu bar. To run a tool, users can simply
drag it to the canvas panel to the right and a tool
node will appear on the canvas. A node, shown
in the workflow Figure 2, contains several input
and output ports, corresponding to the inputs and
outputs of the tool.

Tool nodes can be linked together to form a
pipeline and the connections represent the data flow
during execution (Figure 2). A connection starts
from an output port and ends in an input port. An
input port accepts only a single connection while an
output port can initiate one or multiple connections.
Users can edit the tool by clicking the Editor but-
ton ( ) on the top right corner and the node will be
toggled to an editor interface (Figure 3). The editor
contains the expression of the tool (Section 3.3),
which can be modified by the users. The rightmost
part is the worksheet panel that displays the content
of the current selected worksheet. Worksheets are
editable markup documents provided by CodaLab.
Dragging a bundle entry from the worksheet panel
to the canvas will create a data node. A data node
is similar to the tool node except that it does not
have any input port which naturally represents a
data entity in a computational pipeline.

3For simplicity, pre-processing steps like tokenization is
built-in in each tool.

3.2 CodaLab Back End

An important design goal of BENTO is flexibil-
ity. Users should be able to easily define their own
tools on the BENTO platform and customize exist-
ing tools at the command line level. For this reason,
we use CodaLab as the back end for tool execution
on the BENTO platform. CodaLab is a cloud-based
platform designed for running computational ex-
periments in data-oriented research. In CodaLab,
researchers can easily set up a reproducible environ-
ment and run arbitrary command line by specifying
a docker image and bundle dependencies. In Co-
daLab, bundles are immutable objects that hold the
content of datasets. The output files produced by
that command will be saved into a new bundle and
can be further passed to down-stream experiments.

All datasets in BENTO are stored as CodaLab
bundles. The tools and pipelines will be compiled
into CodaLab commands. Users could submit com-
mands to the CodaLab back end via the web inter-
face. Such design makes the computational results
of the BENTO platform reproducible through Co-
daLab. Since CodaLab will record dependency
information in run bundles, it is also easy to recre-
ate the pipeline on our platform from existing re-
sult bundles. Using CodaLab as the back end also
mitigates the engineering challenges such as job
scheduling and data management.



98

Figure 3: The CodaLang expression for the tool NER in
Figure 2. The expression can be roughly split into three
sections indicated by the dashed squares. The first sec-
tion declares the arguments of this tool. As seen, the
tool takes three bundles as inputs: config, input and
pretrained model. The second section declares a con-
stant code which is initialized with an existing bundle.
The third section is a string template for generating the
CodaLab command.

3.3 BENTO Back End

The BENTO back end is for storing tools and
generating CodaLab commands from the pipeline
graphs.

3.3.1 CodaLang: A Tool Configuration
Language

The tools in BENTO are described via our custom
language called CodaLang4 It acts as an intermedi-
ate layer between the web interface and CodaLab.
It has a succinct syntax for specifying the inter-
faces of a tool, i.e. the inputs and outputs. It also
provides a string template mechanism for creating
CodaLab commands from input arguments. For
example, the CodaLang expression for the node
NER in Figure 2 is shown in Figure 3.

The configuration is composed of three sections
which are highlighted with dotted squares. The
first section declares the arguments of the tool, cor-
responding to the three input ports of the node.
The second section creates a constant variable code
which is assigned an existing bundle. The third
section is a string template for generating the Co-

4A thorough introduction can be found at
https://github.com/jyh1/codalang .

Figure 4: The CodaLab commands generated from the
pipeline in Figure 2. Two CodaLab commands are gen-
erated based on two steps in the pipeline, namely NER
and relation extraction. The bundle dependency infor-
mation is highlighted in orange and the shell commands
are colorized in red. The results in the first step are
saved in the variable bundle 0 (circled in blue squares),
which is used as a bundle dependency in the command
of the second step.

daLab command. It includes execution options
(e.g., request-docker-image) and tool bash com-
mands. The template variables are circled by the
squares in the same color with their declarations.
Once the values of the tool arguments are deter-
mined, a CodaLab command can be easily gen-
erated based on the command template. The run
bundle created by the command will be used as
results and can be passed on to down-stream tools
in the pipeline. Through CodaLang, users can eas-
ily modify existing tools or create their own tools.
The tool configuration can also be automatically
generated from the dependency information of a
bundle.

3.3.2 Pipeline Execution
We have described how BENTO transforms a sin-
gle tool to a CodaLab command. In this section,
we will describe how BENTO transforms a tool
pipeline into multiple CodaLab commands. In a
tool pipeline, tools are connected together to form
a directed acyclic graph. During execution, tools
are transformed to CodaLab commands according
to their topological order in the graph. Take the
pipeline in Figure 2 as an example, its correspond-
ing CodaLab commands shown in Figure 4.

As shown in Figure 4, the bundle dependency
information is highlighted in orange and the shell
commands are colorized in red. The two CodaLab
commands correspond to the two tool nodes in the
pipeline of Figure 2. The first command is gener-
ated from the tool NER based on its tool configura-
tion in Figure 3. The results of this command are
saved in the variable bundle 0, which will be em-



99

ployed as a bundle dependency in the command of
the tool for relation extraction. The web interface
takes the responsibility of submitting the gener-
ated commands to CodaLab. When the pipeline
begins to run, the worksheet panel will display the
information of the newly created run bundles.

4 Tools Integrated in BENTO

In this section, we list the tools that have already
been integrated to our platform, including:

• Hypoglycemic Event Detection (Jin et al.,
2019): Hypoglycemic events are common and
potentially dangerous conditions among pa-
tients being treated for diabetes. This tool can
be used to automatically detect hypoglycemic
events from EHR notes.

• Clinical Entity Recognition (Li et al., 2018):
This tool has been built to recognize 9 types
of clinical entities such as medications, indi-
cations and adverse drug events (ADEs).

• Clinical Relation Extraction (Li et al., 2018):
This tool is able to extract 7 types of relations
between clinical entities such as medications
and their durations, dosages and frequencies.

• Disease Name Normalization (Li et al., 2019):
This tool can be used to normalize disease
names to some controlled vocabularies such
SNOMED5 and MEDIC (Davis et al., 2012).

• De-identification: This tool is able to recog-
nize 18 types of protected health information
that needs to be removed to de-identify pa-
tient notes. We employed BERT (Devlin et al.,
2019) to build a de-identification model whose
performance is comparable with the state-of-
the-art system (Dernoncourt et al., 2017).

We provide examples and instructions to use
these tools on the demo page of our platform. For
convenience, these tools all take plain text files as
inputs and have the pre-processing and tokeniza-
tion components built-in. In the future, we will
integrate stand-alone components dedicated for pre-
processing and tokenization to BENTO which can
be shared by different application tools. We also
plan to incorporate more NLP tools developed by
our group(Rumeng et al., 2017; Rawat et al., 2019;
Lalor et al., 2019; Zheng and Yu, 2018).

5https://www.snomed.org

5 Conclusion

In this paper, we have described the design of
the workflow management platform BENTO. To
the best of our knowledge, BENTO represents the
first web-based workflow management platform
for NLP research. Using BENTO, researchers can
make use of existing tools or define their own tools.
Computational pipelines can be configured through
a web-based user-interface and then automatically
executed on CodaLab. BENTO includes a number
of clinical NLP tools to facilitate the process of
EHR notes. A demo of our platform is available at
bio-nlp.org/bentodemo/.

References
Enis Afgan, Dannon Baker, Bérénice Batut, Marius

Van Den Beek, Dave Bouvier, Martin Čech, John
Chilton, Dave Clements, Nate Coraor, Björn A
Grüning, et al. 2018. The galaxy platform for ac-
cessible, reproducible and collaborative biomedical
analyses: 2018 update. Nucleic acids research,
46(W1):W537–W544.

TM Apache cTAKES. 2018. clinical text analysis
knowledge extraction system.

Hyejin Cho, Wonjun Choi, and Hyunju Lee. 2017. A
method for named entity normalization in biomedi-
cal articles: application to diseases and plants. BMC
bioinformatics, 18(1):451.

Allan Peter Davis, Thomas C Wiegers, Michael C
Rosenstein, and Carolyn J Mattingly. 2012. Medic:
a practical disease vocabulary used at the compara-
tive toxicogenomics database. Database, 2012.

Franck Dernoncourt, Ji Young Lee, Ozlem Uzuner,
and Peter Szolovits. 2017. De-identification of pa-
tient notes with recurrent neural networks. Journal
of the American Medical Informatics Association,
24(3):596–606.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Mennatallah El-Assady, Wolfgang Jentner, Fabian
Sperrle, Rita Sevastjanova, Annette Hautli, Miriam
Butt, and Daniel Keim. 2019. lingvis. io-a linguistic
visual analytics framework. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
13–18.

https://bio-nlp.org/bentodemo/
https://bio-nlp.org/bentodemo/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


100

Nitin Hardeniya, Jacob Perkins, Deepti Chopra,
Nisheeth Joshi, and Iti Mathur. 2016. Natural Lan-
guage Processing: Python and NLTK. Packt Pub-
lishing Ltd.

Bin He, Yi Guan, and Rui Dai. 2019. Classifying med-
ical relations in clinical text via convolutional neural
networks. Artificial intelligence in medicine, 93:43–
49.

Abhyuday N Jagannatha and Hong Yu. 2016. Struc-
tured prediction models for rnn based sequence la-
beling in clinical text. In Proceedings of the confer-
ence on empirical methods in natural language pro-
cessing. conference on empirical methods in natural
language processing, volume 2016, page 856. NIH
Public Access.

Yonghao Jin, Fei Li, Varsha G Vimalananda, and Hong
Yu. 2019. Automatic Detection of Hypoglycemic
Events From the Electronic Health Record Notes of
Diabetes Patients: Empirical Study. JMIR medical
informatics, 7(4):e14340.

John P Lalor, Beverly Woolf, and Hong Yu. 2019. Im-
proving electronic health record note comprehen-
sion with noteaid: Randomized trial of electronic
health record note comprehension interventions with
crowdsourced workers. Journal of medical Internet
research, 21(1):e10793.

Fei Li, Yonghao Jin, Weisong Liu, Bhanu Pratap Singh
Rawat, Pengshan Cai, and Hong Yu. 2019. Fine-
Tuning Bidirectional Encoder Representations From
Transformers (BERT)-Based Models on Large-
Scale Electronic Health Record Notes: An Empiri-
cal Study. JMIR medical informatics.

Fei Li, Weisong Liu, and Hong Yu. 2018. Extraction of
Information Related to Adverse Drug Events from
Electronic Health Record Notes: Design of an End-
to-End Model Based on Deep Learning. JMIR med-
ical informatics.

Haodi Li, Qingcai Chen, Buzhou Tang, Xiaolong
Wang, Hua Xu, Baohua Wang, and Dong Huang.
2017. Cnn-based ranking for biomedical entity nor-
malization. BMC bioinformatics, 18(11):79–86.

Zengjian Liu, Buzhou Tang, Xiaolong Wang, and Qing-
cai Chen. 2017. De-identification of clinical notes
via recurrent neural network and conditional random
field. Journal of biomedical informatics, 75:S34–
S42.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd annual meet-
ing of the association for computational linguistics:
system demonstrations, pages 55–60.

Thomas Morton, Joern Kottmann, Jason Baldridge, and
Gann Bierner. 2005. Opennlp: A java-based nlp
toolkit. In Proc. EACL.

Xipeng Qiu, Qi Zhang, and Xuan-Jing Huang. 2013.
Fudannlp: A toolkit for chinese natural language
processing. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 49–54.

Rafal Rak, Andrew Rowley, William Black, and Sophia
Ananiadou. 2012. Argo: an integrative, interactive,
text mining-based workbench supporting curation.
Database, 2012.

Bhanu Pratap Singh Rawat, Fei Li, and Hong Yu. 2019.
Naranjo question answering using end-to-end multi-
task learning model. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2547–2555.

Li Rumeng, N Jagannatha Abhyuday, and Yu Hong.
2017. A hybrid neural network model for joint pre-
diction of presence and period assertions of medi-
cal events in clinical notes. In AMIA Annual Sympo-
sium Proceedings, volume 2017, page 1149. Ameri-
can Medical Informatics Association.

Ergin Soysal, Jingqi Wang, Min Jiang, Yonghui
Wu, Serguei Pakhomov, Hongfang Liu, and Hua
Xu. 2018. Clamp–a toolkit for efficiently build-
ing customized clinical natural language processing
pipelines. Journal of the American Medical Infor-
matics Association, 25(3):331–336.

Kai Xu, Zhanfan Zhou, Tianyong Hao, and Wenyin Liu.
2017. A bidirectional lstm and conditional random
fields approach to medical named entity recognition.
In International Conference on Advanced Intelligent
Systems and Informatics, pages 355–365. Springer.

S Yu and T Cai. 2013. Nile: fast natural language
processing for electronic health records. Preprint at
https://arxiv. org/abs/1311.6063.

Jiaping Zheng and Hong Yu. 2018. Assessing the read-
ability of medical documents: a ranking approach.
JMIR medical informatics, 6(1):e17.

https://doi.org/10.2196/14340
https://doi.org/10.2196/14340
https://doi.org/10.2196/14340
https://doi.org/10.2196/14830
https://doi.org/10.2196/14830
https://doi.org/10.2196/14830
https://doi.org/10.2196/14830
https://doi.org/10.2196/14830
https://doi.org/10.2196/12159
https://doi.org/10.2196/12159
https://doi.org/10.2196/12159
https://doi.org/10.2196/12159

