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Abstract

This paper documents the systems developed by LIMSI for
the IWSLT 2014 speech translation task (English→French).
The main objective of this participation was twofold: adapt-
ing different components of the ASR baseline system to the
peculiarities of TED talks and improving the machine trans-
lation quality on the automatic speech recognition output
data. For the latter task, various techniques have been con-
sidered: punctuation and number normalization, adaptation
to ASR errors, as well as the use of structured output layer
neural network models for speech data.

1. Introduction
LIMSI participated in the IWSLT 2014 Evaluation Cam-
paign in the spoken language translation (SLT) task for
English→French language pair. Although LIMSI hosts both
automatic speech recognition (ASR) and machine translation
(MT) research activities, this was our first contribution to the
SLT task and the effort was thus focused on one single trans-
lation direction. This year’s SLT task consists in automatic
transcription and translation of a test set composed of sev-
eral recordings of TED online conferences1. The automatic
speech transcriptions that have been used in our experiments
were produced by the in-house ASR system adapted to TED
data, rather than using the transcripts provided by the orga-
nizers (hypotheses from several automatic speech recogniz-
ers combined using the ROVER approach). As far as the au-
tomatic translation step is concerned, we addressed various
typical challenges of SLT: to bring automatic transcriptions
closer to the expectations of the MT system (mainly trained
on written text), to adapt MT models to erroneous ASR out-
put, and to improve the general translation quality.

This paper is structured as follows. We first present the
ASR system and the adaptation steps taken to improve the
automatic transcriptions of the TED data. We then describe
various approaches used to bring the ASR output data and
the expected MT input data format into accordance with each
other, as well as our attempts to adapt standard MT systems
to ASR output. Finally, the impact of re-scoring n-best trans-
lation hypotheses using SOUL models is presented in the
closing section.

1https://www.ted.com/

2. ASR systems: adaptation to TED talks data
The LIMSI automatic speech recognition system for broad-
cast data [1] was adapted to the task of transcribing TED
talks. The adaptations concern the acoustic and language
models and the pronunciation dictionary.

Prior to transcription, the audio documents are parti-
tioned identifying the portions containing speech to be tran-
scribed [2] and associating segment cluster labels, where
each segment cluster ideally represents one speaker.

Two types of acoustic features are used. The first are
PLP-like [3], with cepstral normalization carried out on a
segment-cluster basis [1]. A 3-dimensional pitch feature vec-
tor (pitch, ∆ and ∆∆ pitch) is added to the original PLP one,
resulting in a 42-dimension feature vector. The second type
are probabilistic features produced by a Multi-Layer Percep-
tron (MLP) from raw TRAP-DCT features [4], which have
been shown to improve system performance when concate-
nated with cepstral features [5]. The MLP networks were
trained using the simplified training scheme proposed in [6]
using phone state targets. The feature vector formed by con-
catenating the MLP, PLP and pitch features has 81 elements.

The acoustic models are gender-independent, tied-state,
left-to-right 3-state HMMs with Gaussian mixture obser-
vation densities (typically 32 components). The triphone-
based phone models are word-independent, but position-
dependent. The states are tied by means of a decision tree
to reduce model size and increase triphone coverage. The
acoustic models are speaker-adaptive (SAT) and Maximum
Mutual Information (MMIE) trained.

N-gram language models are obtained by interpolating
multiple unpruned component LMs trained on subsets of the
training texts and used for both decoding and lattice rescor-
ing. Language model training is performed with LIMSI STK
toolkit which allows efficient handling of huge language
models without any pruning or cutoff.

Word decoding is carried out in two passes. Each de-
coding pass produces a word lattice with cross-word, word-
position dependent acoustic models, followed by consensus
decoding with a 4-gram language model and pronunciation
probabilities. The system vocabulary contains 95k words.
Unsupervised acoustic model adaptation is performed for
each segment cluster using the CMLLR and MLLR [7], and
the lattices produced are rescored with a 4-gram back-off
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dataset WER (del., ins.)
dev2010 15.0 (4.0, 3.5)
tst2010 12.7 (3.3, 2.7)

Table 1: Case-insensitive recognition results on the 2010 dev
and tst data, scored using sclite.

LM. The first decoding pass is carried out with a modi-
fied version of our 2011 Quaero system for broadcast data
in English [8, 9] in which a language model trained on the
provided ASR texts including the IWSLT14 TED LM tran-
scriptions (3.2M words) was interpolated with the baseline
78k-word language model. The first decoding pass is done
in 1xRT. The acoustic models in the first pass were trained
on the data distributed in Quaero as well as on data from
other sources from previous European or national projects
and from the LDC. All acoustic and other language model
training data predate December 31, 2010. The Euronews data
provided by the organizers was not used. The second pass
decoding used the same interpolated language model with
acoustic models trained only on 180 hours of transcribed
TED talks predating December 31, 2010 to better target the
TED data.

The case-insensitive recognition results on the 2010 dev
and tst data are given in Table 1 scoring with the NIST sclite
scoring using the provided stm and no glm.

3. MT systems: adaptation to speech data
3.1. Machine Translation with N-code

NCODE implements the bilingual n-gram approach to
SMT [10, 11, 12] that is closely related to the standard
phrase-based approach [13]. In this framework, the transla-
tion is divided into two steps. To translate a source sentence f
into a target sentence e, the source sentence is first reordered
according to a set of rewriting rules so as to reproduce the
target word order. This generates a word lattice containing
the most promising source permutations, which is then trans-
lated. Since the translation step is monotonic, the peculiarity
of this approach is to rely on the n-gram assumption to de-
compose the joint probability of a sentence pair in a sequence
of bilingual units called tuples.

The best translation is selected by maximizing a linear
combination of feature functions using the following infer-
ence rule:

e∗ = argmax
e,a

K∑

k=1

λkfk(f , e,a), (1)

where K feature functions (fk) are weighted by a set of co-
efficients (λk) and where a denotes the set of hidden vari-
ables corresponding to the reordering and segmentation of
the source sentence. Along with the n-gram translation mod-
els and target n-gram language models, 13 conventional fea-
tures are combined: 4 lexicon models similar to the ones

used in standard phrase-based systems; 6 lexicalized reorder-
ing models [14, 15] aimed at predicting the orientation of
the next translation unit; a “weak” distance-based distor-
tion model; and finally a word-bonus model and a tuple-
bonus model which compensate for the system preference for
short translations. Features are estimated during the training
phase. Training source sentences are first reordered so as
to match the target word order by unfolding the word align-
ments [12]. Tuples are then extracted in such a way that a
unique segmentation of the bilingual corpus is achieved [11]
and n-gram translation models are then estimated over the
training corpus composed of tuple sequences made of sur-
face forms or POS tags. Reordering rules are automatically
learned during the unfolding procedure and are built using
part-of-speech (POS), rather than surface word forms, to in-
crease their generalization power [12].

3.2. MT baseline

This section describes the MT systems trained on written ma-
terial that served as a benchmark for the succeeding experi-
ments aiming at improving the translation quality for speech
transcriptions.

All the parallel corpora used in our translation systems
have been preprocessed to remove excessively long sen-
tences as well as sentences with an important length dif-
ference between the source and the target. The common
preprocessing also included tokenization using the in-house
tool described in [16] and word alignments using MGIZA++
[17] and Moses’s grow-diag-final-and heuristic for alignment
symmetrization.

All the MT systems developed in this study make use
of the N-code system described above for translation model
training and for decoding. Since the N-code system uses
factored models, the training corpora have been tagged with
part-of-speech (POS) labels using TreeTagger [18]. The tar-
get language model used discriminative log-linear interpola-
tion approach to combine the model trained on TED mono-
lingual data provided by the organizers and the bigger LM
trained on WMT data (SRILM [19] toolkit was used for both
models).

Our baseline system only uses the training data provided
by the IWSLT campaign organizers, composed exclusively
of TED talks recordings: we were thus subsequently able
to quickly experiment with various adaptation techniques as
well as to measure the impact of including large, out-of-
domain, corpora.

We performed some additional cleaning on TED cor-
pus, mostly related to extra textual information not present
in the audio signal: removing speaker names or initials at
the beginning of some lines, removing comments between
square brackets and between parentheses, etc. Those notes
are added by transcribers in order to facilitate the understand-
ing of the text by human readers, but are useless and even
confusing in the context of automatic speech translation.
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3.2.1. Impact of the out-of-domain corpora

We tried to improve the performance of the baseline system
trained on in-domain data only, by adding various bilingual
corpora from the WMT Evaluation Campaign [20]: News-
Commentary (NC), Europarl (EPPS) and Gigaword filtered
as in [21] (GIGA). All those models were tuned on the same
manually transcribed development set (dev2010). As can be
seen in Table 2, only the filtered Gigaword corpus actually
helped improve the performance of the baseline system. In
accordance with these results, we used only this corpus as
the additional out-of-domain corpus for our final system.

Table 2: Baseline MT experiments with written corpora.

training corpora BLEU
dev2010 test2010

TED 28.8 33.2
TED + NC + EPPS 29.5 33.0

TED + NC + EPPS + GIGA 29.6 34.0
TED + GIGA 29.7 34.4

For the sake of speeding up the experiments with the
adaptation of the MT systems to the characteristics of the
speech data, only the TED corpus was used for training those
intermediate systems. Our final system, however, to which
the SOUL re-scoring was applied, made use of both TED
and the Gigaword data.

3.3. Narrowing the gap between ASR and MT

An important source of MT quality deterioration on ASR
output consists in various formatting differences between this
output and the written corpora used for the training of the
MT engine. One of the promising axes of improving the
speech translation quality is therefore to reduce the gap be-
tween the ASR output and the source part of the parallel cor-
pora. This goal can be achieved both by post-processing the
speech recognition output before translation and by modi-
fying the source part of the corpora used in MT training to
make them more alike. In this work, we have experimented
with two types of such processing: normalization of num-
bers and punctuation insertion. Other types of normalization
might of cause be considered, such as the normalization of
units of measurement, dates, acronyms etc.

3.3.1. Normalization of numbers

One inconsistency between the output of the ASR system
and the expected input of the MT system is the fact that the
speech recognition system produces the numbers spelled out,
whereas MT systems are trained on written texts where num-
bers are usually written in digits. In both cases, the choice
of the approach to number processing is optimal for the cor-
responding system: a fully spelled representation is closest
to the pronunciation (big numbers may correspond to several
pronounced words) and is thus convenient for ASR; digital

representation is best suited for MT since it is much easier to
translate to the equivalent digital representation on the target
side. For speech translation, however, the inconsistency in
number representations is one obvious source of the transla-
tion quality’s deterioration. To transform fully spelled num-
bers in the ASR output into digits, we used a rule-based algo-
rithm provided by LIMSI’s ASR system as part of the post-
processing to the main recognition system. It must be noted,
however, that the numbers in written texts and the numbers
produced via the above processing are not always the same.
On the one hand, the automatically produced digital forms
may contain errors, and on the other hand, human transcrip-
tions are not always consistent and can choose either to spell
out or not some of the numbers (e.g. 1/3rd vs. one-third). To
bring ASR output as close as possible to the expectations of
MT, we applied the number transformation to the source side
of the TED corpus. In order to do this, we first converted all
the digital numbers to text and then re-converted them to dig-
its using the same algorithm as for the post-processed ASR
output. A new MT system was then trained based on this
corpus (norm).

To evaluate the impact of the number normalization on
speech translation, we used the test set provided by the or-
ganizers (tst2010), for which we compared the translation
performance on manual transcriptions to the performance on
the automatic transcriptions produced by our baseline ASR
system (WER=17%). Table 3 compares the performance of
the baseline system to the performance of the system trained
and tuned on normalized corpora. As expected, on the ASR
output better results were obtained with normalization. How-
ever, the results on the manual transcriptions suffered a small
degradation which is most probably due to to the errors pro-
duced by the normalization processing.

Table 3: Experiments with number normalization.

training corpora normalization BLEU (tst2010)
auto manual

TED no norm 20.5 33.2
norm 21.0 33.0

3.3.2. Punctuation

Speech speech recognition systems do not generally produce
punctuation as part of their output. The LIMSI ASR sys-
tem makes it possible to add punctuation in a post-processing
step, but it only includes very basic punctuation marks, such
as commas and stop signs. The MT system, on the other
hand, is expected to produce fully punctuated text as its out-
put and is typically trained on punctuated sources. The per-
formance on the manually transcribed test data, that does not
contain any recognition errors, is nevertheless degraded dra-
matically if the punctuation is removed from the source side
of the test (BLEU=25.5, as compared to BLEU=33.0 for the
punctuated test, see Table 3).
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Possible solutions to this problem have been explored,
for example, in [22]. One solution is to build a new MT sys-
tem based on the training corpora with unpunctuated source
side: the system is thus trained to implicitly insert punctua-
tion as part of the general translation process (implicit punc-
tuation). Another solution is to produce automatic punctua-
tion for the source language and to insert some punctuation
marks to speech recognition output before translation (ex-
plicit punctuation in source): this approach has the advan-
tage of allowing to keep the MT system unchanged. Our
experiments with both approaches are shown in Table 4. We
trained a new MT system unpunctuated in source (implicit
punct), where we removed all the punctuation marks from
the source side of both training corpus (TED) and tuning
corpus (dev2010). This unpunctuated system was applied to
the normalized ASR output without punctuation in test. The
punctuated version of the TED MT system was applied to
the same test punctuated by one of our two punctuation sys-
tems. Both of these punctuation systems were based on MT
techniques and were trained on unpunctuated TED corpus as
source and the same corpus with punctuation in target. One
system used all the possible punctuations (all), whereas the
other only used simple unpaired punctuation: commas, stops,
colons, semi-colons, question and exclamation marks (main).
The implicit punctuation and as well as the explicit punctua-
tion with main marks achieve equivalent performance on test
corpus. The fact that main punctuation insertion yields in
better performance than all punctuation insertion can be ex-
plained by the fact that the paired punctuation marks (such as
quotes or parentheses) are often separated by several words
and are therefore much harder to predict correctly in the MT
framework. The data sparsity also contributes to the fact that
the insertion of all the types of the punctuation may add more
errors than correct predictions.

Table 4: Experiments with punctuation.

training corpora punct test BLEU (tst2010 auto)
TED (implicit punct) none 24.4

TED (man punct)
none 21.0

auto all 24.0
auto main 24.4

3.4. Adaptation of MT systems to ASR output

In addition to various surface differences between ASR out-
put and MT training corpora such as described above, the
most important source of difficulties for speech translation
are the errors and the irregularities present in speech recog-
nition output: if the source is degraded, the quality of trans-
lation is likely to suffer subsequently. It is to be expected,
however, that for some types of errors the translation qual-
ity could be improved if the training data for MT included
the errors produced by the recognizer, thus allowing for the
MT system adapt to the variation in the output of this specific

recognizer. This is why we experimented with an extra train-
ing corpus (TED auto) obtained by automatic transcription
of the speech signal of the talks present in TED training cor-
pus by our baseline ASR system. The corpus thus produced
was normalized as described above. Since both punctuated
and unpunctuated versions of the manual TED training cor-
pus produced similar results and for the sake of time, we used
only the unpunctuated version for these experiments so as to
quickly determine the impact of the ASR output in training.

Table 5 compares different configurations for training
corpora:

• TED manual transcription only

• TED auto transcription only

• TED manual and TED auto used separately (two trans-
lation tables)

• TED manual and TED auto used together (one transla-
tion table)

The source side of the development corpus (dev2010)
was composed of manual transcriptions for the first model,
of automatic transcriptions for the second model and of both
automatic and manual transcriptions for the last two models.

Using both corpora produces the best results probably
since it allows for the MT system to learn on both correct
and erroneous examples. The best performance is achieved
with one translation table.

Table 5: Adaptation to ASR output in MT training.

training corpora BLEU
(test2010 auto, no punct)

TED man only 24.4
TED auto only 24.2

TED man+auto (2 tables) 24.6
TED man+auto (1 table) 24.8

3.5. Final MT system configuration

Based on the results of all the experiments with speech trans-
lation described above, for the final systems we used two cor-
pora in training:

• TED man+auto (in one corpus)

• Gigaword (filtered)

Table 6 presents the results for these systems both with
and without punctuation in source. The performance of the
punctuated system (with ASR data re-punctuated by punct
main) proved to be slightly better, so this system was used for
the final step of the processing: SOUL NNLM and NNTM n-
best re-scoring. This table also reports the performance of the
final punctuated MT system on the test set transcribed with
the final ASR system adapted to TED data (WER=12.8%),
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as compared to the same test set transcribed with the base-
line ASR system (WER=17%). This shows the impact of
the ASR quality on the translation performance. We subse-
quently used this test set for the experiments with SOUL.

Table 6: Final MT system performance and the impact of the
ASR adaptation to TED data on the MT performance.

training corpora punctuation
BLEU

(test2010 auto)
ASR ASR

baseline final run
TED man+auto (1 table) no punct 24.8 -

+ GIGA no punct 25.0 -
punct main 25.5 27.7

3.6. SOUL models

Neural networks, working on top of conventional n-gram
back-off language models, have been introduced in [23, 24]
as a potential means to improve discrete language mod-
els. As in previous submissions in the WMT evaluation
(see [25] for instance), we took advantage of the recent pro-
posal of [26]. Using a specific neural network architecture,
the Structured OUtput Layer (SOUL), it becomes possible to
estimate n-gram models that use large vocabulary, thereby
making the training of large neural network models feasi-
ble both for target language models and for translation mod-
els [27]. Moreover, the peculiar parameterization of contin-
uous models allows us to consider longer dependencies than
the one used by conventional n-gram models, for instance
n = 10 instead of n = 4.

3.6.1. Description of model structure

SOUL language model is a feed-forward multilayer neu-
ral networks estimating word’s probability given its context
made of the n− 1 previous words (typically n = 10). While
this model is similar to neural probabilistic language models
introduced in [23], the output layer that predicts the word is
organized into a tree structure. This structured output layer
allows the model to predict words for large vocabulary appli-
cations.

SOUL translation models rely on a specific decom-
position of the joint probability P (f , e,a) of a sentence
pair, where f is a sequence of I reordered source words
(f1, ..., fI), and e contains J target words (e1, ..., eJ), and
a is an alignment between f and e. In the n-gram approach
to SMT [10, 11, 12] this segmentation is a by-product of
source reordering, and ultimately derives from initial words
and phrase alignments. In this framework, the basic trans-
lation units are tuples, which are analogous to phrase pairs,
and represent a matching u = (f, e) between a source phrase
f and a target phrase e.

The n-gram assumption decomposes the joint probability

into the products of tuples’ probabilities as follow:

P (f , e,a) =
L∏

i=1

P (ui|ui−1, ..., ui−n+1) (2)

However, as mentioned in [27], this decomposition implies a
large vocabulary of bilingual tuples, hence its generalisation
capability is limited due to data sparsity issues. As a remedy,
the n-gram probabilities in the right-hand side of (2) are fac-
tored by first decomposing tuples into source and target parts
(or phrases), and then considering each part as a word stream.
The decomposition process results in 4 word-factored bilin-
gual models as described in [27], each of which produces a
feature score that is added to the final system before SOUL
(Section 3.4).

3.6.2. Integration of SOUL models

Given the computational cost of computing n-gram probabil-
ities with neural network models, we resorted to a two-pass
approach: the first pass uses a conventional system to pro-
duce an N -best list (the N most likely hypotheses); in the
second pass, probabilities are computed by SOUL models for
each hypothesis and added as new features. Then the N -best
list is reordered according to a combination of all features
including these new features. In our experiments, 10-gram
SOUL models were used to rescore 300-best lists. Overall
system’s log-linear coefficients were optimised using k-best
Batch Margin Infused Relaxed Algorithm (KBMIRA) [28]
on the automatically transcribed development set.

3.6.3. Training

SOUL models are trained to maximise the likelihood. This
optimization is carried out using a mini-batch version of
Stochastic Back-propagation (see [24, 26] for more details).
However, given the computational cost of each training
batch, training corpora are usually resampled at each epoch:
instead of performing several epochs over the whole training
data, a different small random subset is used at each epoch.

To mitigate the impact of in-domain and out-of-domain
corpora, the target language model was trained using for each
epoch a set of n-grams of which 75% were sampled from
TED data, and the remaining 25% from Gigaword.

SOUL translation models were trained on bilingual tuples
constructed from the word alignments of training corpora’s
sentence pairs. The mixing of training corpora was more
complicated as TED corpus contains both manual and auto-
matic transcriptions. In an attempt to narrow the gap between
ASR and MT as mentioned in Section 3.3, we used TED auto
corpus along with TED manual to train our translation mod-
els. To separately evaluate the impact of each corpus, three
configurations were tested. The first two consisted in train-
ing models on TED manual and TED auto separately. In the
third configuration, a mix of TED data (manual and auto con-
catenated) and Gigaword was used, where 75% of n-grams
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Systems dev test
Before SOUL 23.7 27.7

Adding all 4 SOUL TMs
+ TMs TED manual 24.1 27.9
+ TMs TED auto 24.2 28.0
+ TMs mixing TED-GIGA 24.4 27.9
Adding all 4 SOUL TMs and SOUL target LM
+ TMs TED manual + LM 24.3 27.9
+ TMs TED auto + LM 24.3 27.6
+ TMs mixing TED-GIGA + LM 24.4 28.3

Table 7: Results of the reranking process with various added
feature functions. The first line indicates the result for the
best MT system before SOUL. The upper and lower parts of
the table show results of adding SOUL TMs and target LM
into this system.

used at each epoch were sampled from the former, and 25%
from the latter.

Table 7 presents results of adding SOUL features into the
best MT system. The performance is evaluated in terms of
BLEU scores on the automatically transcribed development
and test sets. As shown in the upper part of the table, the
models trained on TED auto yield slightly better results than
those trained on TED manual. It might be due to the fact
that hypotheses in the development and test sets were gener-
ated using source sentences automatically transcribed as de-
scribed previously, and hence are closer to TED auto’s bilin-
gual tuples. However, the use of SOUL target language model
gave gain only on the configuration trained on the mixed cor-
pora of TED and Gigaword; the best result shown in the last
line corresponds to the final system submitted for the evalu-
ation as our primary system.

4. Conclusions
In this paper, we described our submissions for the IWSLT
2014 speech translation task. Our contribution is twofold:
first, we investigated different approaches to adapt a stan-
dard speech recognition system to TED talks; then the differ-
ent components of the MT system were improved for a better
interaction with ASR output. The MT systems were trained
using our in-house translation system (NCODE). We experi-
mented with various techniques for bringing the ASR output
data and the expected MT input data format as close as pos-
sible. In particular, number normalization and punctuation
insertion both allowed to improve the translation quality over
the baseline system on ASR data. We also exprimented with
various configurations for including the ASR data as part of
the MT system so as to adapt this system to the errors and
other specific features of the speech recognition output.

Our best submission used both manual and ASR data
pooled together for building one translation table. This sys-
tem was augmented with the integration of continuous space
models in a n-best rescoring step. Surprisingly, the gains on

the ASR output test data were rather small as compared to
the improvement obtained on very similar task for text trans-
lation (see [29, 25]). Further analyses are required to better
explain these results.

5. Acknowledgements
The authors would like to expresses their gratitude to Jan
Niehues for his help and advice in the preparation of this
submission.

6. References
[1] J.-L. Gauvain, L. Lamel, and G. Adda, “The LIMSI

Broadcast News Transcription System,” SPCOM,
vol. 37, no. 1-2, pp. 89–108, 2002.

[2] ——, “Partitioning and transcription of broadcast news
data,” ICSLP, vol. 98, no. 5, pp. 1335–1338, 1998.

[3] H. Hermansky, “Perceptual linear prediction (PLP)
analysis for speech,” Journal of the Acoustical Society
of America, vol. 87, pp. 1738–1752, April 1990.
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