Apertium goes SOA: an efficient and scalable service based on the
Apertium rule-based machine translation platform

Pasquale Minervini
Dipartimento di Informatica
Universita degli Studi di Bari

Via E. Orabona 4, 70125 Bari, Italy
p.minervini@gmail.com

Abstract

Service Oriented Architecture (SOA) is
a paradigm for organising and using
distributed services that may be under
the control of different ownership do-
mains and implemented using various
technology stacks. In some contexts,
an organisation using an IT infrastruc-
ture implementing the SOA paradigm
can take a great benefit from the in-
tegration, in its business processes, of
efficient machine translation (MT) ser-
vices to overcome language barriers.
This paper describes the architecture
and the design patterns used to develop
an MT service that is efficient, scal-
able and easy to integrate in new and
existing business processes. The ser-
vice is based on Apertium, a free/open-
source rule-based machine translation
platform.

1 Introduction

Service Oriented Architecture is an architectural
paradigm providing a set of principles of gov-
erning concepts used during phases of systems
development and integration. In such an ar-
chitecture, functionalities are packaged as inter-
operable, loosely coupled services that may be
used to build infrastructures enabling those with
needs (consumers) and those with capabilities
(providers) to interact across different domains of
technology and ownership.

J.A. Pérez-Ortiz, F. Sanchez-Martinez, F.M. Tyers (eds.)

Several new trends in the computer industry
rely upon SOA as their enabling foundation, in-
cluding the automation of Business Process Man-
agement (BPM) and the multitude of new archi-
tecture and design patterns generally referred to
as Web 2.0 (O’Reilly, 2005).

In some contexts, an organisation using an IT
infrastructure implementing the SOA paradigm
can take a great benefit from the integration, in
its business processes, of an efficient machine
translation service to overcome language barri-
ers; for instance, it could be integrated in col-
laborative enviroments where people, who have
no language in common, attempt to communicate
with each other; or in knowledge extraction pro-
cesses, where data is not available in a language
that can be understood by the domain experts or
the knowledge extraction tools being used.

We implemented a machine translation and lan-
guage recognition service by relying on Aper-
tium' (Armentano-Oller et al., 2005), a free/open-
source rule-based machine translation platform,
and on libTextCat?, a library implementing n-
gram based text categorisation (Cavnar and Tren-
kle, 1994), which provides an inexpensive and
highly effective way of recognising the language
used in documents. libTextCat uses small-sized
fingerprints of the desired languages (circa 4K B
each) rather than resorting to more complicated
and costly methods such as natural language pars-
ing or assembling detailed lexicons; it is also used
by Bitextor (Espla-Gomis, 2009), a system to har-

"http://www.apertium.org/
http://software.wise—-guys.nl/
libtextcat/

Proceedings of the First International Workshop on Free/Open-Source Rule-Based Machine Translation, p. 59-65

Alacant, Spain, November 2009

vest translation memories from multilingual web-
sites.

Our decision to prefer a rule-based machine
translation system like Apertium to a statistical
or an example-based machine translation system
was motivated by the following reasons:?

e Statistical Machine Translation systems tend
to produce translations appearing more “flu-
ent” than translations produced by Rule-
Based systems (which appear more “me-
chanical”), but less faithful to the meaning
of the original text and with less evidence for
translation errors;

e In Rule-Based Machine Translation systems,
linguistic knowledge can be encoded explic-
itly in the form of linguistic data, so that
both humans and automatic systems can pro-
cess it — a great advantage when in presence
of domain-specific and proprietary linguistic
knowledge;

e Experts who have designed a Rule-Based
Machine Translation system tend to find it
easier to diagnose and repair sources of
translation errors, like wrong rules in mod-
ules or wrong entries in dictionaries.

Efficiency and scalability are critical for the
service since, especially in collaborative enviro-
ments, it should be able to sustain a heavy load
of traffic. In this paper, the techniques and design
patterns used to implement the machine transla-
tion service will be described and it will be com-
pared to other existing machine translation sys-
tems.

2 Service APIs

Our service provides the two following capabili-
ties:

Translation — for automatic translation of free
text from a source language to a destination
language;

Language recognition — to automatically guess
the language used in a text;
3This is a summary of comments made by Prof. Mikel L.

Forcada on the apertium-stuff mailing list in Septem-
ber of 2009.

In SOA, interoperability between services is
achieved by using standard languages for the de-
scription of service interfaces and the communi-
cations among services. A widely accepted tech-
nique for implementing SOA consists in mak-
ing use of Web Services (Erl, 2005); a Web Ser-
vice is defined by the W3C as “a software sys-
tem designed to support interoperable machine-
to-machine interaction over a network. It has an
interface described in a machine-processable for-
mat (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by
its description using SOAP-messages, typically
conveyed using HTTP with an XML serializa-
tion in conjunction with other Web-related stan-
dards.” (Brown and Haas, 2004).

Alternative standards to SOAP are XML-
RPC (Winer, 1999), a remote procedure call pro-
tocol which uses XML to encode its calls and
HTTP as a transport mechanism, and Represen-
tational State Transfer (REST) (Fielding, 2000), a
style of software architecture for distributed hy-
permedia systems such as the World Wide Web.

parameters text
source language
destination language
returns | translation
detected source language

Table 1: Parameters and return value(s) for the Translate
method.

’ parameters \ text ‘

’ returns ‘ detected language ‘

Table 2: Parameters and return value(s) for the Detect
method.

Our service natively provides a XML-RPC in-
terface to the translation and language recognition
functionalities, and we also implemented SOAP
and REST wrappers to it. All the interfaces follow
the schema outlined in tables 1 and 2 to expose,
respectively, the translation and the language de-
tection functionalities; those can be subsumed by
the following methods:

Translate — which receives
ters called text,

three parame-

source language and

60

>>> import xmlrpclib

>>> proxy = xmlrpclib.ServerProxy
("http://xixona.dlsi.ua.es:8080/RPC2")

>>> print proxy.translate ("Test for the machine
translation service", "en", "es")
["translation"]

Prueba para el servicio de traduccidén automdtica

Figure 1: Example — invoking our service from the Python
shell using XML-RPC.

destination language containing, respec-
tively the text to be translated, the source
language and the destination language, and
returns a translation value containing the
translated text; if the source language is
omitted, then language recognition is used
to guess it, and the guessed language is re-
turned in the detected source language
value.

Detect — which receives three parameters called
text containing free text, and returns a
detected language value containing the
language used by the text.

In addition, our service provides a Language
Pairs method that returns a sequence of all
the language pairs supported by the transla-
tion system, each represented by a pair contain-
ing the corresponding source language and the
destination language.

In all methods, languages are represented by
their ISO 639-1 (IS0O:639-1, 2002) code. Figure 1
shows a short example of how our service’s XML-
RPC interface can be invoked from the Python*
shell.

3 Internal architecture of the service

Apertium is a transfer-based machine translation
system which uses finite-state transducers for lex-
ical processing, hidden Markov models (HMMs)
for part-of-speech tagging and finite-state-based
chunking for structural transfer. Its translation en-
gine consists of an assembly line, composed by
the following modules:

Formatters — which handle format-specific in-
formation with respect to text to be trans-
lated;

*http://www.python.org/

Morphological analyser — which tokenises the
text in surface forms and delivers, for each
surface form, one or more lexical forms con-
sisting of lemma, lexical category and infor-
mations about morphological inflection;

Part-of-speech tagger — which chooses one of
the analyses of an ambiguous word, accord-
ing to its context;

Lexical transfer module — which reads each
lexical form of the surface form and delivers
the corresponding destination language lexi-
cal form;

Structural transfer module — which detects and
processes patterns of words that need special
processing due to grammatical divergences
between two languages;

Morphological generator — that, from a lexical
form in the destination language, generates a
suitably inflected surface form;

Post-generator — that performs some ortho-
graphic operations in the destination lan-
guage such as contractions;

The modules composing the Apertium assem-
bly line are implemented in the form of console
programs and their functionalities are wrapped
in the form of C++ classes which can be found
in two C++ libraries, called 1iblttoolbox and
libapertium. Modules are then interconnected
by using a UNIX pipeline to implement a final
console program in the form of a shell script,
called apertium which, given an arbitrary lan-
guage pair, handles a translation process in its en-
tirety. All the informations required to execute a
translation task associated to a language pair are
contained in the mode file corresponding to the
given language pair, which specifies which mod-
ules should be run, their parameters and order.

Our service has been developed as a multi-
threaded C++ program which relies on function-
alities implemented in the liblttoolbox and
libapertium libraries to execute each step of
the aforementioned assembly line. In those li-
braries, the code implementing each module was
projected to manage their input and output text
streams in the form of C FILE streams; therefore,

61

on some systems, it is not always possible to han-
dle a module’s input and output without making
use of temporary files. Therefore, to minimise
the interaction with the filesystem, our service re-
lies on open_wmemstream, a C function conform-
ing to the POSIX.1-2008° standard used to create
a C r1LE wide-oriented stream associated with a
dynamically allocated memory buffer: if present,
this function allows our service to store all inter-
mediate representations of the text in in-memory
buffers instead of files. In addition, we had to
completely rewrite the formatters, since those in-
cluded in the Apertium project, which rely on the
GNU flex lexical analyser®, cannot be used con-
currently by the same process. Currently, both the
plain text and HTML formatters have been con-
verted.

sd Resource Pool
Client Resource Resource | | Resource
Pool Enviroment

Figure 2: Sequence diagram describing how acquisition and
release of resources works in a system implementing the
pooling pattern: recycled objects are managed in a pool of
resources, which allows pool clients to acquire them, and re-
lease them back to the pool when they are no longer needed.

To prevent the frequent acquisition and release
of the resources required to execute each step of

Shttp://www.opengroup.org/onlinepubs/
9699919799/
®http://flex.sourceforge.net/

the Apertium assembly line, our service has been
implemented by making use of the pooling pat-
tern (Kircher and Jain, 2004); according to this
design pattern, it is desirable to keep all reusable,
not currently in use resources in the same resource
pool so that they can be managed by a coherent
policy. This pool of resources allows for reuse
when resource clients release resources they no
longer need: released resources are put back into
the pool and made available to resource clients
needing them, as shown in figure 2.

To improve efficiency, the resource pool can
eagerly acquire a number of resources after its
creation; then, if demand exceeds the number of
available resources in pool, more resources can be
lazily acquired.

There are various valid approaches to free un-
used resources, like those consisting of monitor-
ing the use of a resource and controlling its life-
cycle by using strategies such as “least recently
used” (LRU) or “least frequently used” (LFU), or
introducing a lease for every resource that speci-
fies a time duration for which a resource can re-
main in the pool.

In our service, the default policy is to allocate
new resources from the resource enviroment if
there are no resources of the requested type avail-
able in the pool; the service also allows the setting
of a high water mark, i.e. a maximum number of
allocated objects: if the number of allocated ob-
jects is equal to the high water mark, the request-
ing client has to wait in a queue until a resource
of the requested type is available in the pool. In
addition, as we made no prior assumptions about
how the service would be used, it does not apply
any garbage collection policy by default.

Relying on a resource pool is designed to result
in the following improvements for our rule-based
machine translation service:

Performance — Preventing repetitious acquisi-
tion, elaboration and release of resources;

Predictability — Direct acquisition of a resource
from an external resource enviroment (for
example, a filesystem or a DBMS) can lead,
in some cases, to unpredictable results and
dynamic memory allocation and dealloca-
tion can be non-deterministic with respect to
time (Douglass, 2002);

62

Stability — Repetitious acquisition and release of
resources can increase the risk of system in-
stability due, for example, to memory frag-
mentation problems (Utas, 2005; Douglass,
2002);

Scalability — Resources can be recycled by mul-
tiple types of translation tasks — for example,
Formatters can be used in multiple contexts
since they are usually not language pair-
specific.

Another approach to implement a service based
on Apertium by Sdnchez-Cartagena and Pérez-
Ortiz (2009) consists in making use of a pool of
apertium processes: each translation request is
routed to a process making use of the required
language pair, and then its output is returned back
to the service client.

Our approach has a series of advantages and
disadvantages with respect to the one followed by
Sanchez-Cartagena and Pérez-Ortiz (2009); ad-
vantages can be summarised by the following:

Efficiency — Threads usually require less re-
sources when compared to processes, and
Inter-Process Communication (IPC) be-
tween multiple processes tend to be more
complex and expensive than IPC between
multiple threads belonging to the same pro-
cess (Tanenbaum, 2007);

Scalability — Resources can be shared between
multiple translation tasks (even belonging to
different language pairs) without the need of
allocating them for each translation process;

While one disadvantage would be with main-
tainability. Apertium internals still lack standard-
ised API interfaces, therefore future changes to
liblttoolbox and 1ibapertium might make up-
dates to our service necessary;

4 Results

To evaluate the efficiency of our service, which
we will refer to as apertium-service, we com-
pared the time it requires to compute and answer
to a translation request from Spanish to English
with the time required by the following systems:

® apertium, a console application imple-
mented as a part of the Apertium project;

a REST service based
on Apertium and described in Sédnchez-
Cartagena and Pérez-Ortiz (2009), using
one slave instance attached to one request
router;

® apertium-ws,

® apertium-service, the system described in
this paper

All the Apertium-based systems (apertium,
apertium-service and apertium—ws) were em-

ploying the apertium-en-es language pair.’

Comparison in the "Sentence Length - Time" space

350

apertium-service —s—
apertium ——
300 apertium-ws ——

250

200

150 |

Time (ms)

100 |

100 200 300 400 500 600
Sentence Length (string length)

50

Figure 3: Comparison in the “sentence length — time” space
between apertiumand apertium-service; measure-
ments are in string length for the sentence length dimen-
sion and in ms for the time dimension.

Comparison in the "Number of Concurrent Clients - Time" space
300000

apertium-service ——
apertium —+—
apertium-ws —=—

250000

200000

T
£
= 150000 e i i W A s
E
=
100000 |
i
- E:Dn—.—.—*x‘.———-
2 4 6 8 0 12 14 16

Number of Concurrent Clients

Figure 4: Comparison in the “number of concurrent clients
— time” space between apertium, apertium-service
and apertium-ws.

"SVN Revision 16218

63

All the experiments were run on a server with
four 2GHz Dual-Core AMD Opteron processors
and 4GB of main memory, using the GNU/Linux
operating system.
cepting translation requests in the form of XML-
RPC calls, apertium-ws in the form of REST
HTTP GET requests, apertium through standard
input (a new process was created for each trans-
lation task). The free text used for timing all
the systems was also taken from EuroParl corpus.
Figure 3 shows the time required to translate in-
creasingly longer sentences for all systems (val-
ues in the time dimension are shown on a loga-
rithmic scale).

Scalability for the systems has been evaluated
by calculating the average time required by the
systems to answer to 1,024 translation requests
sequentially sent by a variable number of clients;
the requests consisted to translating the longest
sentence from the Europarl evaluation corpus
(679 characters), so to obtain a worst case score,
from Spanish to English. Figure 4 shows the re-
sults of this comparison.

apertium-service was ac-

5 Future work

In terms of developing the service further, there
are two principle avenues. We would like to finish
implementing the rest of the formatters. Currently
only plain text and HTML are supported. Aper-
tium supports several more file formats, such as
ODT and RTF, and it would be desirable to sup-
port these as well.

The other task would be to implement a
JSON/REST interface to the API as used by
Google Translate, and the apertium-ws. Having
a standard API for interfacing with Apertium on
the web would make it easier to use.

The service could be lent to a number of in-
teresting applications. For example, one avenue
we would like to persue is the use of the ser-
vice in cross-language information retrieval in the
biomedical domain. MetaMap (Aronson, 2001) is
an application that allows mapping text to UMLS
Metathesaurus® concepts, which have proved to
be useful for many applications, including de-

8The UMLS Metathesaurus (Schuyler et al., 1993) pro-
vides a representation of biomedical knowledge consisting
of concepts classified by semantic type and both hierarchi-
cal and non-hierarchical relationships among the concepts.

cision support systems, management of patient
records, information retrieval and data mining
within the biomedical domain.

Currently, MetaMap is only available for En-
glish free text, which makes it difficult the use of
UMLS Metathesaurus to represent concepts from
biomedical documents written in languages other
than English. To enable cross-lingual text classi-
fication, Carrero et al. (2008) proposes to make
use of general pourpose statistical machine trans-
lation tools, such as Google Translate®, to trans-
late the documents from their source language to
English, and then process them through the tradi-
tional English MetaMap; unluckily, this approach
presents some important mistakes when translat-
ing terms specific for the biomedical domain.

To overcome this limitation, it should be possi-
ble to employ our Apertium-based service, in con-
junction with bilingual dictionaries, transfer rules
etc. specific for the biomedical domain, to obtain
an accurate translation of biomedical documents
before profitably processing them.

6 Conclusions

We presented apertium-service, a machine
translation service based on Apertium, a
free/open-source rule-based machine translation
platform. It has been shown to be competitive in
both efficiency and scalability when compared to
other machine translation systems.

Source code for our service is released under
the GNU General Public Licence version 3'° and
is available on the Apertium SVN repository.!!

Acknowledgements

Development for this project was funded as part
of the Google Summer of Code!? programme.
Many thanks go to Jimmy O’Regan, Francis Ty-
ers and others involved in the Apertium Project,
for their constant help. Additionally I am grateful
to the anonymous reviewers for their invaluable
comments and suggestions on an earlier version
of this paper.

*http://translate.google.com/
Yhttp://www.gnu.org/licenses/gpl.html
”http: //apertium.svn.sourceforge.net/
svnroot/apertium/trunk/apertium-service
Zhttp://code.google.com/soc/

64

References

Armentano-Oller, C., Corbi-Bellot, A. M., For-
cada, M. L., Ginesti-Rosell, M., Boneyv,
B., Ortiz-Rojas, S., Pérez-Ortiz, J. A.,
Ramirez-Sanchez, G., and Sanchez-Martinez,
F. (2005). An open-source shallow-transfer
machine translation toolbox: consequences of
its release and availability. In OSMaTran:
Open-Source Machine Translation, A work-
shop at Machine Translation Summit X, pages
23-30.

Aronson, A. R. (2001). Effective mapping of
biomedical text to the umls metathesaurus: the
metamap program. Proc AMIA Symp, pages
17-21.

Brown, A. and Haas, H. (2004). Web services
glossary. World Wide Web Consortium, Note
NOTE-ws-gloss-20040211.

Carrero, F. M., Cortizo, J. C., Gémez, J. M., and
de Buenaga, M. (2008). In the development of
a spanish metamap. In CIKM ’08: Proceed-
ing of the 17th ACM conference on Informa-

tion and knowledge management, pages 1465—
1466, New York, NY, USA. ACM.

Cavnar, W. B. and Trenkle, J. M. (1994). N-
gram-based text categorization. In In Proceed-
ings of SDAIR-94, 3rd Annual Symposium on
Document Analysis and Information Retrieval,
pages 161-175.

Douglass, B. P. (2002). Real-Time Design Pat-
terns: Robust Scalable Architecture for Real-
Time Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA.

Erl, T. (2005). Service-Oriented Architecture :
Concepts, Technology, and Design. Prentice
Hall PTR.

Espla-Gomis, M. (2009). Bitextor: a Free/Open-
source Software to Harvest Translation Mem-
ories from Multilingual Websites. In Proceed-
ings of MT Summit XII, Ottawa, Canada. Asso-
ciation for Machine Translation in the Ameri-
cas.

Fielding, R. T. (2000). Architectural Styles and
the Design of Network-based Software Archi-
tectures. PhD thesis, University of California,
Irvine.

I1SO:639-1 (2002). Iso 639-1:2002 — codes for the
representation of names of languages — part 1:
Alpha-2 code.

Kircher, M. and Jain, P. (2004). Pattern-Oriented
Software Architecture Volume 3: Patterns for
Resource Management. Wiley.

O’Reilly, T. (2005). What Is Web 2.0: Design Pat-
terns and Business Models for the Next Gener-
ation of Software.

Sénchez-Cartagena, V. M. and Pérez-Ortiz, J. A.
(2009). An open-source highly scalable web
service architecture for the apertium machine
translation engine. In Proceedings of the First
International Workshop on Free/Open-Source
Rule-Based Machine Translation.

Schuyler, P. L., Hole, W. T., Tuttle, M. S., and
Sherertz, D. D. (1993). The umls metathe-
saurus: representing different views of biomed-
ical concepts. Bull Med Libr Assoc, 81(2):217—
222.

Tanenbaum, A. S. (2007). Modern Operating Sys-
tems. Prentice Hall Press, Upper Saddle River,
NJ, USA.

Utas, G. (2005). Robust Communications Soft-
ware: Extreme Availability, Reliability and
Scalability for Carrier-Grade Systems. John
Wiley & Sons.

Winer, D. (1999). XML/RPC specification. Tech-
nical report, Userland Software.

65

