
Google for the Linguist on a Budget

András Kornai and Péter Halácsy

Budapest University of Technology Media Research Center
{kornai,hp}@mokk.bme.hu

Abstract
In this paper, we present GLB, yet another open source and free system to create and exploit linguistic corpora gathered from the web. A
simple, robust web crawl algorithm, a multi-dimensional information retrieval tool, and a crude parallelization mechanism are proposed,
especially for researchers working in resource-limited environments.

Introduction
The GLB (Google for the Linguist on a Budget)
project grew out of the realization that the current open
source search engine infrastructure, in particular the
nutch/lucene/hadoop effort, is in many ways inad-
equate for the creation, refinement, and testing of language
models (both statistical and rule-based) on large-scale web
corpora, especially for researchers working in resource-
limited environments such as startup companies and aca-
demic departments unlikely to be able to devote hundreds,
let alone thousands, of servers to any project.
Section 1 describes nut, a simple, robust web crawl algo-
rithm designed with the needs of linguistic corpora gath-
ering in mind. Section 2 details luc, an information re-
trieval tool that facilitates querying along multiple dimen-
sions. We leave had, a crude parallelization mechanism
sufficient for load balancing dozens (or perhaps hundreds)
of CPUs and offering fine control over rerunning versions
of different processing steps, to the concluding Section 3.
Many other ways out of the budget predicament have been
proposed, and in the rest of this Introduction we discuss
these briefly, not so much to criticize these approaches as to
highlight the design criteria that emerged from considering
them. First, what do we mean by being on a budget? The
Google search appliance (GSA) starts at $30,000, which
puts it (barely) within reach of grants to individual inves-
tigators, and certainly within the reach of better endowed
academic departments. Unfortunately, the GSA is an en-
tirely closed system, the internals cannot be tweaked by the
investigators, and the whole appliance model is much bet-
ter suited for a relatively static document collection than
for rapid loading of various corpora. Also, the size limi-
tations (maximum of 500k documents) make the GSA too
small for typical corpus-building crawls, and the query lan-
guage is not flexible enough to handle many of the queries
that arise in linguistic practice. There is no breaking out of
separate software and hardware costs in the GSA, and as
our project is providing free (as in beer) and open source
(LGPL) software, our goal was to design algorithms that
run well on any (x86-) 64-bit system with 8-16 GB mem-
ory and 5-10 TB attached storage – today such systems are
available at a quarter of the cost of the GSA.
Another, in many ways more attractive, approach is to rely
on the Google API, Alexa, or some similar easily accessi-
ble search engine cache. Methods of building corpora by
selective querying of major search engines have been pi-

oneered by Ghani (2001), and a set of very useful boot-
strapping scripts was made available by Baroni and Bernar-
dini (2004). But being parasitic on a major search engine
has its own risks. Many of these were discussed in Kilgar-
riff (2007) and require no elaboration here, but there are
issues, in particular integration, query depth, and replica-
bility, which are worth further discussion.
First, there are many corpora which may be licensed to the
researcher but are not available on crawlable pages (and
thus are not indexed by the host engine at all). Such cor-
pora, including purpose-built corpora collected by the re-
searchers themselves, can be extremely relevant to the in-
vestigation at hand, and the integration of results from the
web-based and the internal corpora is a central issue. This
applies to the community-based solution proposed by Kil-
garriff as well, inasmuch as researchers are often bound by
licenses and other contractual obligations that forbid shar-
ing their data with the rest of the community, or even up-
loading it to the Sketch Engine CorpusBuilder.
Second, with the leading search engine APIs, deeper query-
ing of the sort provided by the Linguist’s Search Engine
(Resnik and Elkiss, 2005) or the IMS Corpus Workbench
(see http://www .ims.uni-stuttgart.de
/projekte/CorpusWorkbench) is impossible, a
matter we shall return to in the concluding Section. Finally,
owing to the ever-changing nature of the web, the work
is never replicable. This is quite acceptable for brief
lexicographic safaris where the objective is simply to find
examples, but in the context of system building and re-
gression testing replicability is essential. The main design
requirements for GLB stemming from these considerations
are as follows. The system must

1. run on commodity hardware (less that $15k per node)

2. hold a useful number of pages (one billion per node)

3. provide facilities for logging, checkpointing, repeat-
ing, and balancing subtasks

4. have a useful throughput (one million queries per day)

5. not be a drain on external resources/goodwill

There are various tradeoffs among these requirements that
are worth noting. Trivially, relaxing the budget constraint
(1) could lead to more capable systems in regards to (2)
and (4), but the proposed system is already at the high end

8

of what financially less well endowed researchers, depart-
ments, and startups can reasonably afford. In the other di-
rection, as long as the reliability of storage is taken out of
the equation (a terabyte non-redundant disk space is now
below $1k), memory becomes the limiting factor, and the
same design, deployed on 500m or just 100m items, be-
comes proportionally less memory-intensive, so running
the system on a modern laptop with 4GB memory is fea-
sible. As described in Section 2, GLB does not mandate
storage of web pages as such, the items of interest may also
be sentences or words. For smaller corpora (in the 1m page
range) it may make perfect sense to change the unit of in-
dexing from pages to words and, if disk space is available,
to store more information about a unit than the raw text,
e.g. to precompute the morphological analysis of each word
(or even a full or partial syntactic parse, see some specula-
tive remarks at the end of Section 3). Finally, we note that
the design goal of 1m queries per day (12 queries/sec) may
be too ambitious if all reads are taken on the same non-
redundant disks: while in principle this is well within the
speed and latency capabilities of ordinary disk drives, in
practice a drive may not stand up against sustained use of
this intensity for long. However, those who cannot afford
high quality SANs may also be in less of a need to issue
millions of queries.

1. Nut
Replicability means that pages once crawled and deemed
useful must be kept around forever, otherwise later ver-
sions of some processing step cannot be run on the same
data as the earlier version, which would throw into ques-
tion whether improvements are due to improvements in the
processing algorithm itself or simply to better data. This is
not to say that all pages must be in the scope of all queries,
just that a simple, berkdb-style list of what was included
in which experiment must be preserved. This is in sharp
contrast to full-function crawler databases, which manage
information about when a host and a particular page was
last crawled, when it was created/last changed, how many
in-links it has, etc.
In general, neither link structure nor recency matters a great
deal for a linguistic corpus, as made plain by the fact that
the typical (gigaword) corpora in common use are com-
posed of literary and news text that are entirely devoid of
links and are, for the news portion, several years outdated.
The exhaustiveness of a crawl is also a secondary concern,
since there are far more pages than we can expect to be
able to analyze in any depth. This means that it is suf-
ficient to download any page just once, and we can have
near-zero tolerance toward buggy, intermittent pages: con-
nection timeouts and errorful http responses are sufficient
reason never to go to the page again. Also, the simplest
breadth-first algorithm has as good a chance to turn up lin-
guistically relevant pages as the more complex approaches
taken in large-scale crawlers.
Among the public domain crawlers, heritrix (see
http://crawler.archive.org) has been success-
fully utilized by Baroni and Kilgarriff (2006) to create
high quality gigaword corpora, achieving a crawl through-
put of 35 GB/day. Our own experience with heritrix,

nutch, and larbinwas that sustained rates in this range
are difficult to maintain. We had the best results the WIRE
crawler (Castillo, 2005), 8-10 GB/day sustained throughput
for domains outside .hu and nearly twice that for .hu (the
crawls were run from Budapest, see Halácsy et al 2008).
Our main loop is composed of three stages: management,
fetching, and parsing. Since most of the time is spent fetch-
ing, interleaving the steps could save little, and would en-
tail concurrency overhead. We manage three data sets:
downloaded URLs, forbidden URLs (those that have al-
ready displayed some error), and forbidden hosts (those
with dns resolution error, no route to host, host unreach-
able). We do not manage at all, let alone concurrently, link
data, recency of crawl per host, or URL ordering. This sim-
plifies the code enormously, and eliminates nearly all the
performance problems that plague heritrix, nutch,
larbin and other highly developed crawlers where clever
management of such data is the central effort. To speed up
name resolution (host,ip) pairs already resolved are stored
in a simple hash table, and we ignore issues of hosts with
multiple IPs and the existence of CNAMEs. The three lists
we maintain are read into memory once and written on disk
for the next stage, so nothing is ever overwritten. As a mat-
ter of fact, it is sufficient for the fetcher to simply append to
the list of downloaded URLs on disk, since duplicate elim-
ination (which is not a big issue here) can happen as part of
building the hash table on the next cycle.
The bulk of the time is spent fetching, and the efficiency
of the fetcher is due essentially to the tightly written
ocamlnet library, which was designed for high perfor-
mance from the ground up. We use asynchronous, non-
blocking I/O throughout, with callbacks that mesh well
with the functional paradigm. We keep a maximum of N (in
the range 1000-2000) connections open. Just as the WIRE
and larbin (Ailleret, 2003) crawlers, we use GNU ADNS
(Jackson and Finch, 2006), an asynchronous-capable DNS
client library to resolve IP address of unknown hosts. We
keep every resolved IP cached, ignoring changes and TTL
issues entirely. Asynchronous name resolution improves
speed by a factor of 10. Since the fetcher runs in a single
process (with OS-level callbacks), the downloaded HTML
file is simply appended to the tail of a large batch. In case of
errors (including the case when mime type is not text/html)
the URL is placed on the forbidden list. Because charset-
normalization is a step that cannot always be performed by
standard libraries, we prefer to save out the charset infor-
mation that is given in the http together with the original
text and perform the conversion at a later stage. This facil-
ity would actually be a very useful addition in crawlers like
WIRE or larbin which perform charset-normalization at
download time, especially if the target is a less commonly
taught language where the standard conversion libraries are
not mature.
The parse step locates <a href= and pulls out the fol-
lowing quoted string, normalizing this using the base URL
of the page. URLs containing angled brackets, question
marks, or space/tab/newline are discarded. It is the respon-
sibility of the management stage to detect duplicates, filter
out the forbidden URLs and hosts, and to organize the next
pass search in a manner that puts less load on smaller sites,

9

leveraging the built in ability of ocamlnet to serialize re-
quests to a single host.
Altogether, the effort to tailor the crawl to the need of lin-
guists pays off in notably improved throughput: instead of
the 35 GB/day reported in Baroni and Kilgarriff (2006),
nut has a sustained throughput of over 330 GB/day. This
number is largely delimited by bandwidth availability at the
Budapest Institute of Technology: nut is three times as fast
(over 20 GB/hour) at night than during the day (8 GB/hour).

2. Luc
In search engine work the assumption that the fundamen-
tal unit of retrieval is the document (downloaded page)
is rarely questioned. Yet in many classical IR/IE appli-
cations, books are broken up into chapters to be ranked
(and returned) separately, and in question answering it is
generally necessary to pinpoint information even more pre-
cisely, breaking documents down to the section, paragraph,
or even sentence level. In many linguistic applications the
objects of interest are the sentences, but for purposes of
morphological analysis we are also interested in systems
capable of responding to queries by single words or mor-
phemes. For the smallest elements it is tempting to keep
the entire dataset in main memory, but this would entail a
drastic loss of efficiency for corpora that go beyond a single
DVD: under more realistic query loads the system would
page itself to death.
The luc IR subsystem of GLB stands neutral on the size
or composition of the retrieved unit, but it assumes that in
the typical (non-cached) case it will take at least one disk
seek to get to it. At the 2GHz clock speeds and 10ms seek
latencies typical of contemporary hardware, one can easily
invert a 100x100 matrix the time it takes to fetch a single
disk block. Thus the name of the game is to minimize the
seeks, which means that all information about a retrieval
unit that is relevant for speeding up queries must be pre-
computed and stored in an index kept in memory. Luc lim-
its the size of the indexes to 4GB with the idea that at any
given time two copies (a working copy and one under up-
date/refresh) must stay in main memory. Since a billion
retrieval units (see our goal 2) will require four-byte point-
ers (seek offsets), the 4GB limit on indexes is very tight,
leaving no room for auxiliary indexes or meta-information
stored with the offset. But if such information cannot be
stored with the document pointer, how can it be accessed?
The key idea is to use the pointer itself, or more precisely,
the location of the pointer in memory, to encode this infor-
mation. We assume a small set of k dimensions, each di-
mension taking values in the [0,1] interval. Typical features
that could be encoded in such numbers include the page
rank of a document, the authority of the site it comes from,
the recency of the document, its normalized length, and so
on. In practice, none of these scales requires the granularity
provided by 64-bit floats, and there are many quantization
techniques we can use to arrive at a more compressed but
still useful representation. Without loss of generality, we
can assume that in any dimension values are limited to in-
tegers in the 0 to Mi range for i = 1 . . . k.
There are important retrieval keys, such as the presence of
a word w in a document, which require some encoding to

fit into the luc model. We rank words by DF (and within a
single DF, lexicographically) to arrive at a canonical order-
ing: in a typical gigaword corpus there will be on the order
of a million different words. A single document will be in-
dexed as many times as it has different words, so a gigaword
corpus will require perhaps a hundred million pointers (but
not more, since the per-document token multiplicities are
collapsed).
The entire index is conceptualized as a single k-
dimensional array with static bounds Mi. The main advan-
tage of this view is that pointers to documents that should
come early on the postings list are located close to the ori-
gin, and are accessible as k − 1 dimensional slices of the
original array. For example, if our query involves the terms
plane, of, immanence, it is the last word which has the high-
est IDF, and query execution may begin by fetching the
contents of the subarray that has the kth coordinate fixed
at the value assigned to this word. Since the index array is
very sparse, the key to fast execution is to compress it by
kd-tree techniques.
In the luc model the impact of the different dimensions
of classification on memory usage is similar to the impact
that building a secondary array would have, but this fact
is carefully hidden from the retrieval routines. For exam-
ple, if we wish our posting lists to contain not just words,
but POS-tagged words, the number of pointers per docu-
ment grows (assuming that not every token of a type gets
tagged the same way), and this impacts the size of the tree
that supports the sparse array. Once the meta-information
stored with a retrieval unit grows beyond 4 bytes, either in-
dex size cannot be kept at 4 GB or the number of retrieval
units per node must be curtailed. Either way, the design
aims squarely at what is likely to be the sweet spot in the
memory price/performance curve for the next decade or so,
with 8-16 GB DIMMs already reasonably cheap today and
64-128 GB machines likely to be commodity by 2020.

3. Conclusions
GLB is work in progress. Nut, the best developed com-
ponent, is already in the performance tuning stage. It is
currently capable of 50-200 URLs/sec, (20 MB/s download
bandwidth, more than what our network can sustain), which
we consider satisfactory for a single node, and large-grain
parallelization in had style is not complicated. At the time
of this writing nut still ignores robots.txt, but once
this antisocial behavior is fixed it will be ready for release
(planned by the time of the meeting) under LGPL.
Luc is in a more preliminary stage, especially as we strive
to optimize query execution. The design described above
is really optimized for the situations where the bulk of the
subselection work is carried by the partial ordering that is
encoded in any coordinate dimension. This works well for
IDF, recency, and all other examples described in the main
text, but falls short of the ideal of matching subtree-like
patterns in syntactic descriptions (parse structures) that is
explored in LSE. Realistically, we do not believe we can
keep as much information as a parse tree in memory for
each sentence and still maintain high performance charac-
teristics, but this is largely a question of encoding parse in-
formation efficiently in an array-based system.

10

While our current goal is to first support regular expres-
sion queries composed of lexical entries and POS tags (i.e.
the kind of queries familiar from IMS), and to respond to
the more complex LSE-type queries based on a regexp ‘sta-
pler’ (Bangalore, 1999), it is tempting to speculate how one
would go about supporting complex syntactic queries from
the get-go. The key issue is to encode syntactic relation-
ships in their own dimensions: for example, in a system
where “parse” means identifying the deep cases (Fillmore,
1968; Fillmore, 1977), a separate dimension would be re-
quired for each deep case, and even this would only help
encoding main clause syntax. Encoding subordination and
coordination would require further additions, and so would
modifiers, possessives, and other issues considered criti-
cal in parsing. The effective balance between complicat-
ing the storage structure and query execution time needs to
be tested carefully, and it may well turn out to be the case
that stapling (which amounts to query-time discarding of
false positives) is more effective than precomputing these
relationships at load time.
Finally, had is still in the early design stage. Again, bud-
get considerations are paramount: we expect neither thou-
sands of highly capable processors nor exabyte storage to
be available to GLB users. In fact, we expect no more than
some form of shared disk space (e.g. NFS crossmounts or
AFS). Tasks are expected to run on a single node for no
more than a few hours. Each node will run a demon that
can start a single task, and with the volume of task-related
transactions staying well below a thousand per hour a sin-
gle, central batch distributor is sufficient. We expect a rudi-
mentary but usable system to be available together with the
first release of nut.

Acknowledgments
We thank Dániel Varga (Budapest Institute of Technol-
ogy) for performing measurements on other crawlers, and
the anonymous referees for their penetrating remarks – re-
sponding to the issues they raised improved the draft sig-
nificantly.

4. References
Sebastien Ailleret. 2003. Larbin: Multi-purpose web

crawler.
Srinivas Bangalore. 1999. Explanation-based learning and

finite state transducers: Application for parsing lexical-
ized tree-adjoining grammars. In Andras Kornai, editor,
Extended finite state models of language, pages 160–192.
Cambridge University Press.

Marco Baroni and Silvia Bernardini. 2004. Bootcat: Boot-
strapping corpora and terms from the web. In Proceed-
ings of Language Resources and Evaluation Conference
(LREC04), pages 1313–1316. European Language Re-
sources Association.

Marco Baroni and Adam Kilgarriff. 2006. Large
linguistically-processed Web corpora for multiple lan-
guages. In Companion Volume to Proceedings of the Eu-
ropean Association of Computational Linguistics, pages
87–90, Trento.

Carlos Castillo. 2005. Effective Web Crawling. PhD The-
sis, Department of Computer Science, University of
Chile, Santiago.

Charles Fillmore. 1968. The case for case. In
E. BachandR. Harms, editor, Universals in linguistics
theory, pages 1–90. Holt and Rinehart, New York.

Charles Fillmore. 1977. The case for case reopened. In
P. ColeandJ. M. Sadock, editor, Syntax and Semantics 8:
Grammatical relations, pages 59–82. Academic Press,
New York.

Rayid Ghani. 2001. Combining labeled and unlabeled data
for text classification with a large number of categories.
ICDM, First IEEE International Conference on Data
Mining (ICDM’01), 01:597–.

Péter Halácsy, Andrá1s Kornai, Péter Németh, and Dániel
Varga. 2008. Parallel creation of gigaword corpora for
medium density languages – an interim report. In Pro-
ceedings of Language Resources and Evaluation Con-
ference (LREC08), page to appear. European Language
Resources Association.

Ian Jackson and Tony Finch. 2006. Gnu adns – advanced,
easy to use, asynchronous-capable DNS client library
and utilities.

Adam Kilgarriff. 2007. Googleology is bad science. Com-
putational Linguistics, 33(1):147–151.

Philip Resnik and Aaron Elkiss. 2005. The linguist’s
search engine: an overview. In ACL ’05: Proceedings of
the ACL 2005 on Interactive poster and demonstration
sessions, pages 33–36, Morristown, NJ, USA. Associa-
tion for Computational Linguistics.

11

