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Abstract 

We present a new unsupervised syntax-based MT system, termed U-DOT, which uses the unsupervised U-DOP model for learning 

paired trees, and which computes the most probable target sentence from the relative frequencies of paired subtrees. We test U-DOT 

on the German-English Europarl corpus, showing that it outperforms the state-of-the-art phrase-based Pharaoh system. We 

demonstrate that the inclusion of noncontiguous phrases significantly improves the translation accuracy. This paper presents the first 

translation results with the data-oriented translation (DOT) model on the Europarl corpus, to the best of our knowledge. 

 

Introduction: Phrase-Based vs Syntax-Based 

Machine Translation 
 

Phrase-based and syntax-based methods in MT have 

complementary strengths and shortcomings. While 

phrase-based methods have been highly successful 

(Koehn et al. 2003), it has often been noted that such 

methods are too constrained for translating discontiguous 

constructions like take SB by surpise (Chiang 2005; 

Nesson et al. 2006). Shieber (2007) gives evidence that 

more than half of the entries in the HarperCollins Italian 

College Dictionary can be subject to ‘noncontiguity’. Yet, 

many syntax-based methods have achieved only small (or 

no) improvements over purely phrase-based methods. It 

has been noted that the disappointing contribution of 

syntactic methods may be due to the traditional notion of 

syntactic constituent which often harms rather than helps 

in finding a correct translation (see Chiang 2005). A well-

known example is the German-English pair Es gibt and 

There is, that are both non-constituents. Purely 

linguistically syntax-based systems therefore often 

underperform phrase-based methods (e.g. Yamada and 

Knight 2001). What would be needed is a system that 

takes into account contiguous as well as discontiguous 

phrases, regardless whether they form linguistically 

motivated constituents. 

In this paper we start an investigation into using 

a successful unsupervised parsing system, known as U-

DOP (Bod 2006, 2007) for providing the tree structures 

for bilingual corpora such as the Europarl corpus. U-DOP 

induces a probabilistic tree-substitution grammar (PTSG) 

from raw data, and has achieved some of the best 

unsupervised parsing results in the literature (Klein and 

Manning 2002, 2004; Dennis 2005; Seginer 2007). We 

will use the structures induced by U-DOP for extending 

the so-called Data-Oriented Translation (DOT) system 

(Poutsma 2000; Hearne and Way 2003) towards 

unsupervised DOT, which we will term U-DOT. U-DOT 

starts by assigning all possible alignments between paired 

trees bootstrapped by U-DOP and uses the (smoothed) 

relative frequencies of the subtree pairs to compute the 

most probable target sentence given a source sentence. 

This leads to an MT model which takes into account all 

possible contiguous as well as discontiguous phrases.  

 Our model is riminiscent of the hierarchical phrase-

based model of Chiang (2005) and the synchronic 

probabilistic tree-insertion grammar model of Nesson et 

al. (2006), but it differs also from these models in various 

ways. Firstly, we make use of a structure bootstrapping 

model, U-DOP, which computes the probability of each 

tree by summing up the probabilities of its derivations by 

means of Viterbi n best. This probability model, which is 

also used in computing the best translation, makes the 

model sensitive to both large and small subtrees. 

Secondly, our model only uses substitution as a 

combination operation between subtrees, while Shieber 

(2007) has shown the importance of including the 

insertion operation. DOP models with the insertion 

operation have been developed in Hoogweg (2003), and 

will be extended to MT in future research. Our model is 

congenial to Galley et al. (2006) who also use subtrees as 

productive units in a synchronous tree-substitution 

grammar for MT. 

In the following, we will first briefly review the 

DOT model, and show how it can be generalized to 

unsupervised MT by extending it with U-DOP. We next 

discuss the algorithmic background of this new U-DOT 

model and present experiments involving machine 



translation from German to English with the Europarl 

corpus. We end with a conclusion.  

 

Data-Oriented Translation (DOT) 
 

The Data-Oriented Translation model (DOT) uses the 

DOP model (Bod et al. 2003) as a basis for statistical MT 

(Poutsma 2000; Hearne and Way 2003, 2006; Groves et 

al. 2004). DOT starts with a bilingual treebank where 

each tree pair constitutes an example translation pair and 

where translationally equivalent constituents are linked, 

as e.g. in figure 1 for the English-French Click Save – 

Cliquez sur Enregistrer (taken from Groves et al. 2004). 
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Figure 1. Aligned trees for the English-French pair Click 

Save – Cliquez sur Enregistrer as used in DOT  

 

Like DOP, the DOT model then uses all linked subtree 

pairs from the bilingual treebank to form a probabilistic 

tree-substitution grammar (PTSG) where the productive 

units consist of linked subtrees which are used to compute 

the most probable translation of a target sentence given a 

source sentence. Linked subtrees from the tree pair in 

figure 1 are given in figure 2 (also the entire tree pair 

constitutes a linked subtree). 
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Figure 2. Linked subtrees from the translational tree pair 

in figure 1 

 

The probability model for this PTSG is similar to the 

DOP1 model (Bod et al. 2003) and is given in Poutsma 

(2000), Groves et al. (2004) and others: the probability of 

a target sentence given a source sentence is computed by 

summing up the probabilities of all derivations (which is 

in practice computed by Viterbi n best derivations). The 

probability of a derivation is the product of the 

probabilities of the subtree pairs involved in it, while the 

probability of a subtree pair is estimated by its (smoothed) 

relative frequency in the aligned treebank. 

As to date, all experiments with DOT have been 

carried out on very small, manually annotated treebanks 

such as the HomeCentre corpus of 810 parsed and aligned 

sentence pairs (see Hearne and Way 2006). The extension 

of DOT to larger treebanks will run into formidable 

annotation tasks. While Groves et al. (2004) show how 

the alignment task can be partly automated, there is an 

additional issue in how far – if at all – DOT combines 

syntactic and phrase-based information. Since DOT is 

based on linguistically motivated syntax, the model equals 

the notion of phrase with the notion of syntactic 

constituent. However, it is well known by now (e.g. 

Koehn et al. 2003; Chiang 2005) that such an approach 

has difficulties in capturing phrase-pairs that go beyond 

constituents, such as the German-English pair Ich 

möchte… - I would like to… which are both non-

constituents. On the other hand, purely phrase-based 

methods have difficulties in capturing discontiguous 

translation pairs such as the English-Italian the nearest 

airport to Trento - l’ aeroporto più vicino a Trento, which 

reflects the dicontiguous translation pair nearest NP1 to 

NP2 - NP1 più vicino a NP2. 

What would be needed is a DOT model which is 

not based on pre-annotated trees but a DOT model which 

allows for any substring, be it contiguous or 

discontiguous, to form a potential ‘constituent’. This can 

be accomplished by using the unsupervised U-DOP 

model for learning trees, resulting in a new model which 

we will call U-DOT. 

 

Unsupervised Data-Oriented Translation  

(U-DOT) 
 

U-DOT is based on an extension of the DOP model to 

unsupervised parsing known as U-DOP (Bod 2006). U-

DOP assigns all unlabeled binary trees to a set of given 

sentences (possibly tagged), and next takes (in principle) 

all subtrees from these binary trees to compute the most 

probable trees. For example, the tagged WSJ sentence 

Investors suffered heavy losses has a total of five different 

binary trees, as shown in figure 3 (where each root node is 

labeled with S and each internal node is labeled with X). 
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Figure 3. All binary trees for Investors suffered heavy 

losses as proposed by U-DOP 

 

Although the number of binary trees for a sentence grows 

with the Catalan number, the total set of (unlabeled) 

binary trees can be stored efficiently by a packed parse 

forest.  

The underlying idea of U-DOP is to use (the 

frequencies of) all subtrees from this binary tree set to 

compute the most probable tree for each sentence. 

Subtrees from the trees in figure 3 include for example the 

subtrees in figure 4. 
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Figure 4. Some subtrees from the trees in figure 3 

 

Thus U-DOP takes into account both contiguous 

substrings like Investors suffered X and non-contiguous 

substrings like Investors X losses. This property carries 

over to our unsupervised extension of DOT.  

In Bod (2007) we have shown how a parse forest 

of binary trees can be converted into a compact PCFG in 

the vein of Goodman (2003), and which we will 

summarize in the next section. The PCFG reduction of 

parse forests allowed us to induce trees for very large 

corpora in Bod (2007), such as the four million sentences 

NANC corpus (Graff 1995). These large experiments 

could be accomplished also thanks to an efficient 

estimator known as DOP* (Zollmann and Sima’an 2005). 

While the resulting U-DOP model was called U-DOP* in 

Bod (2007), we will continue to refer to the model as U-

DOP in the current paper as long as no confusion arises.  

U-DOP was been evaluated on English, German 

and Chinese, obtaining some of the best unsupervised 

results in the literature (Bod 2007). However, compared 

to supervised parsers, U-DOP’s results are considerably 

lower: where U-DOP obtains about 70% unlabeled f-

score on the standard section 23 of the Wall St Journal, 

many supervised parsers obtain around 91% on the same 

set. Yet it should be kept in mind that the evaluation on 

hand-parsed data unreasonably favors supervised parsers. 

For instance, U-DOP learns constituents for word 

sequences such as We would like to… and There are…, 

which in the Penn Treebank are non-constituents. While 

U-DOP is thus punished for this ‘incorrect’ prediction if 

evaluated on the Penn Treebank, this property of U-DOP 

may be beneficial if evaluated in the context of machine 

translation using the Bleu score. Thus U-DOP can 

discover phrases which are typically neglected by 

linguistically motivated syntax-based translation models. 

At the same time, the model can also learn discontiguous 

dependencies that are typically neglected by phrase-based 

MT systems (Koehn et al. 2003). 

The extension of DOT with U-DOP is now 

straightforward. Instead of starting from treebanks, we 

start from unlabeled corpora and use our new 

implementation of U-DOP in Bod (2007) to infer the 

‘best’ binary trees directly for word strings from bilingual 

corpora. Next, we assign links between each two tree 

nodes for each sentence pair and compute the most 

probable translation for a held-out data set from the 

relative frequencies of the subtree pairs (see next section). 

We will refer to this unsupervised version of DOT as U-

DOT. To give a simple illustration of U-DOT, consider 

the German-English pair Es gibt viele Zeitungen and 

There are many newspapers for which U-DOP induces 

respectively the structures in figure 5 (we leave the words 

untagged): 

 
[[Es gibt]X [viele Zeitungen]X]S 

 

[[There are]X [many newspapers]X] S 

 
Figure 5. Two structures induced by U-DOP 

 

Then, U-DOT assigns links between all subtree pairs, as 

in figure 6: 

 



 [Es gibt]X – [There are]X 
 

 [Es gibt]X – [many newspapers]X 
 

 [[Es gibt]X [viele Zeitungen]X]S – [[There are]X    

 [many newspapers]X]S 
 

 [viele Zeitungen]X – [There are]X 
 

 [viele Zeitungen]X – [many newspapers]X 

 
Figure 6. Possible alignments between Es gibt viele 

Zeitungen and There are many newspapers according to 

U-DOT 

 

Many of these alignments would result in incorrect 

translations. How does U-DOT rule out incorrect 

alignments such as Es gibt - many newpapers on the basis 

of frequency only? It is easy to see that we only need to 

observe one other sentence pair with Es gibt, for example 

Es gibt keine Mitglieder … - There are no members … to 

make the alignment Es gibt – There are more frequent 

than alternative alignments for Es gibt.
1
  

 

Converting Parse Forests into PCFG 

Reductions 
 

In principle we can use an O(n
3
) CKY-style parsing 

algorithm for (U-)DOT which first parses the source 

string, after which the target string is derived from it by 

following the links. The main computational problem is 

how to deal with the large number of subtrees. There 

already exists an efficient supervised algorithm that 

parses a sentence by means of all subtrees from a 

treebank. This algorithm was extensively described in 

Goodman (2003) and converts a DOP-based PTSG into a 

compact PCFG reduction that generates eight rules for 

each node in the treebank. Goodman’s reduction is based 

on the following idea: every node in every tree is assigned 

a unique number which is called its address. The notation 

A@k denotes the node at address k where A is the 

nonterminal labeling that node. A new nonterminal is 

created for each node in the training data. This 

nonterminal is called Ak. Let aj represent the number of 

subtrees headed by the node A@j, and let a represent the 

number of subtrees headed by nodes with nonterminal A, 

that is a = Σj aj. Then there is a PCFG with the following 

property: for every subtree in the training corpus headed 

by A, the grammar will generate an isomorphic 

subderivation. For example, for a node (A@j (B@k, 

C@l)), the following eight PCFG rules in figure 7 are 

generated, where the number following a rule is its 

weight.  

                                                 
1 Of course, there is also the pair Es gibt – There is. Bod 

(forthcoming) shows that distinctions between singular and 

plural nouns can be learned by U-DOP. 

 

Aj → BC       (1/aj)   A → BC        (1/a) 

Aj → BkC      (bk/aj)   A → BkC      (bk/a) 

Aj → BCl      (cl/aj)   A → BCl           (cl/a) 

Aj → BkCl        (bkcl/aj)   A → BkCl         (bkcl/a) 

 
Figure 7. PCFG reduction for supervised DOP 

 

By simple induction it can be shown that this construction 

produces PCFG derivations isomorphic to DOP 

derivations (Goodman 2003: 130-133). The PCFG 

reduction is linear in the number of nodes in the corpus. 

In practice, we smooth the subtree numbers by a simple 

extension of the good-turing method (see Bod 2006). 

While Goodman’s reduction method was 

developed for supervised DOP, where each training 

sentence is annotated with exactly one tree, the method 

can be generalized to a corpus where sentences are 

annotated with all possible binary trees, as long as we 

represent the trees from the source-language by a shared 

parse forest. A shared parse forest can be obtained by 

adding pointers from each node in the chart (or tabular 

diagram) to the nodes that caused it to be placed in the 

chart. Such a forest can be represented in cubic space and 

time (Billot and Lang, 1989). Then, instead of assigning a 

unique address to each node in each tree, as done by the 

PCFG reduction for supervised DOP, we now assign a 

unique address to each node in each parse forest for each 

sentence. However, the same node may be part of more 

than one tree. A shared parse forest is an AND-OR graph 

where AND-nodes correspond to the usual parse tree 

nodes, while OR-nodes correspond to distinct subtrees 

occurring in the same context. The total number of nodes 

is cubic in sentence length n. This means that there are 

O(n
3
) many nodes that receive a unique address as 

described above, to which next our PCFG reduction is 

applied. This is a huge reduction compared to Bod (2006) 

where only ad hoc sampling could make U-DOP work. 

Next, we compute the most probable target 

sentence from the 1,000 most probable derivations by 

means of Viterbi n-best (the exact computation of the 

most probable sentence from all derivations is NP hard – 

see Sima’an 1996). We incorporated the technique by 

Huang and Chiang (2005) into our implementation which 

allows for efficient Viterbi n-best parsing.  

 

Experiments 
 

We used the Europarl German-English corpus which 

consists of 750,000+ sentence pairs with roughly 15,3 

million German words and 16,1 million English words. 

We evaluated the translation performance on a 2,000 

sentence test set from a different part of the Europarl 

corpus. The BLEU score (Papineni et al. 2002) was used 

to measure translation accuracy, as calculated by the 



NIST script (version 11a) with its default settings. The 

main reason to test U-DOT on German-English is that U-

DOP has already been shown to obtain good results in 

learning structures for German and English sentences 

(resp. for the NEGRA corpus and the Wall St Journal 

corpus).  

We computed for each test sentence the most 

probable translation as estimated from the 1,000 most 

probable derivations. We tested both the full U-DOT 

model, using all subtrees, and a restricted model, termed 

U-DOT−, which discards all subtrees with discontiguous 

yields. As a baseline, we compared our results against the 

publicly available state-of-the-art phrase-based system 

Pharaoh (Koehn et al. 2003), using the default feature set. 

Next, we also used human judgements of translation 

quality by randomly selecting 100 sentences from the test 

corpus. Three subjects evaluated the 100 translations 

produced by each system in random order against the gold 

standard reference translation using a 5 point fluency and 

adequacy scale. Table 1 shows the results, where U-

DOT+ refers to the full U-DOT model containing subtrees 

with contiguous as well as noncontiguous yields, while U-

DOT− uses only subtrees without discontiguous yields 

(that is, without any open node between lexicalized 

nodes). 

 

System BLEU Fluency Adequacy 

Pharaoh 0.251 3.2 3.1 

U-DOT+ 0.280 3.4 3.3 

U-DOT− 0.248 3.1 2.9 

 

Table 1. Results of evaluating U-DOT with all subtrees 

(U-DOT+) and U-DOT without discontiguous subtrees 

(U-DOT−) against the phrase-based Pharaoh system. 

 

The table shows that U-DOT+ outperforms both U-DOT− 

and the Pharaoh system, while the Pharaoh system 

outperforms U-DOT−. By using Zhang’s significance 

tester (Zhang et al. 2004), which employs bootstrap 

resampling (Koehn 2004), we calculated that the 

difference in performance between U-DOT+ and Pharaoh 

is statistically significant (p < 0.008). Our system 

achieves an absolute improvement of 0.029 over the 

baseline. Also the difference between U-DOT+ and U-

DOT− is statistically significant, but the difference 

between Pharaoh and U-DOT− is not. These experiments 

show that U-DOT+’s inclusion of discontiguous phrases 

significantly improves the translation accuracy for 

German-English. Also with respect to human judgments, 

U-DOT+ appears to perform better than the purely 

phrase-based Pharaoh system. It would be interesting to 

compare our system to the clause restructuring method by 

Collins et al. (2005) and to the hierarchical phrase-based 

model by Chiang (2005), but these systems are not (yet) 

publicly available, though we hope to include a 

comparison in future research. 

We next wanted to compare the U-DOT system, 

which in Chiang (2005)’s terminology is only formally 

syntax-based, against the supervised DOT model which is 

linguistically syntax-based. Since there are no hand-

annotated trees for the Europarl corpus, we employed the 

supervised DOP model from Bod (2003), which was 

trained on Penn’s Wall St Journal corpus, to parse the 

trees from the English Europarl. We additionally used the 

unknown word model in Bod (2003) which uses statistics 

on word endings, hyphenation and capitalization. 

However, it is well known that DOP’s f-score decreases if 

it is applied to another domain: for example, DOP’s 

accuracy decreases from around 91% to 85.5% f-score if 

tested on the Brown corpus. Yet, this score is still 

considerably higher than the accuracy obtained by the 

unsupervised U-DOP model, which is 67.6% unlabeled f-

score on unrestricted Brown sentences. Although in the 

absence of a gold standard, we cannot measure DOP’s f-

score on the Europarl, our use of DOP is motivated by the 

fact that we want to compare a supervised parser against 

an unsupervised one in the context of machine translation. 

For the German part of the Europarl, we trained the DOP 

parser on the Negra corpus, as Dubey and Keller (2003). 

Although the use of different training sets resulted in 

differently labeled trees for English and German under 

supervised DOP, we simply assigned all possible links 

between the nodes and let the statistics decide (using the 

PCFG reduction technique to compute the most probable 

translation from the 1,000 most probable derivations). 

Table 2 shows the results, where DOT+ refers to the full 

DOT model based on the supervised DOP parser, while 

DOT− refers to the DOT model after excluding subtrees 

containing discontiguous yields. For comparison, we also 

added the results of our fully unsupervised MT systems 

from table 1 again, i.e., U-DOT+, U-DOT− and Pharaoh. 
 

 

System BLEU 

DOT+ 0.221 

DOT− 0.209 

U-DOT+ 0.280 

U-DOT− 0.248 

Pharaoh 0.251 

 

Table 2. Results of evaluating the supervised DOT 

systems against the unsupervised U-DOT systems, 

compared to the phrase-based Pharaoh system. 

 

The table shows that the unsupervised U-DOT+ model 

outperforms the supervised DOT+ model (p < 0.001). 

Surprisingly, the non-contiguous U-DOT− also 



outperformed the DOT+ model (p < 0.05), even if DOT+ 

included both contiguous and discontiguous phrases. 

 

Conclusions 
 

We have shown that the inclusion of noncontiguous 

phrases in U-DOT significantly improves the translation 

accuracy for the German-English Europarl corpus, 

outperforming the state-of-the-art phrase-based Pharaoh 

system which is based on contiguous phrases only. Our 

experiments also indicated that an unsupervised syntax-

based MT system outperforms a supervised syntax-based 

MT system. Our experiments need of course be extended 

to other languages and more complex test sets. In 

particular, we want to compare U-DOT to other syntax-

based MT systems such as Chiang (2005).  
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