
[International Conference on Machine Translation of Languages and Applied Language Analysis, National Physical
Laboratory, Teddington, UK, 5-8 September 1961]

THE MECHANICAL ANALYSIS OF LANGUAGE

by

MICHAEL LEVISON, B.Sc.

(Department of Numerical Automation,
Birkbeck College, University of London)

INTRODUCTION

AFTER the early heuristic attempts at crude mechanical translation, it was
clear that the next step was to insert into the machine programmes containing
detailed grammatical and syntactic information regarding the particular lan-
guages being processed. Unfortunately it was found that this information was
not available in a sufficiently logical form to be taken over into machine
programmes in a relatively simple way.

To overcome this difficulty work has been carried out in the Department
of Numerical Automation, Birkbeck College, to develop programmes which will
themselves make analysis of language in terms directly suitable for use by a
computer.

NOTATION

The following notation; previously adopted by the author,1) will be used
herein:

(1) W << W , to denote that word W is alphabetically earlier
than word W .

W >> W and W = W are also used appropriately.

(ii) Flow Diagram Conventions:

E is the point of entry into the programme. Other circles contain
alternative points of exit, or points referred to in the text of
the paper.

Blocks with a double line to the left contain the initial settings
of the various parameters.

Diamonds contain questions with Yes/No answers.

(98026) 562

ALPHABETIC ARRANGEMENT

The simplest of all applications of a computer to linguistic analysis
are such problems as the evaluation of the relative frequencies of various
letters, letter-groups or initial letters in a given text, and the calcula-
tion of the average number of letters per word or words per sentence. These
problems are so simple that no comment is needed as to their solution, though
it should be noted that the results, especially of the latter two, are of
interest in analysis of literary style.

A problem of somewhat more complexity is that of alphabetic arrangement.
It is often useful or necessary to be able to arrange in alphabetical order
a set of words in the store of the computer.

One possible programme for this purpose is illustrated in figure 1.
The number of words in the set is n, and these are considered initially to
occupy "dictionary positions" in the store numbered from 0 to (n-1). Dp
denotes the contents of dictionary position p at any stage of the programme.

The process involved is to find, for each r from 0 to (n-2) in turn,
the alphabetically earliest of the words (Dr, Dr+1, ..., Dn-1), and to
interchange this with Dr.

At stage A, s indicates the position of the alphabetically earliest
word so far found for this value of r, and t the position of the word with
which it will be next compared.

The programme requires

n-2
 (n-l)-(r+l) +l
r=o

= ½ (n-l)n

word comparisons, and (n-1) word interchanges.

Other programmes for the same purpose can be based on glossary-making
procedures.

If a further n dictionary positions are available, a glossary of words
can be constructed in these extra positions. A typical programme, involv-
ing for each word in succession logarithmic searching of the extra positions
followed by shifting and insertion, would require, on average, approximately
n log2 n word comparisons and ¼n

2 word shifts.

(98026) 563

If the extra dictionary positions are not available, a possible pro-
gramme would be to insert each successive word starting with the second in
its correct alphabetical position among the previous words. This would
require, on average, approximately ¼n2 word comparisons and ¼n2 word
shifts.

Choice of programme is determined by available space and by time, the
latter being governed largely by the times of the word comparison and word
shift operations. In this connection it should be noted that one inter-
change is usually equivalent to three shifts, that is

(AB) = (A x) + (B A) + (x B)

In practice word comparison is almost always a somewhat longer opera-
tion than word shifting, so that, if the necessary space is available, the
second of these three processes is usually the fastest.

GLOSSARIES AND CONCORDANCES

The construction of a glossary of a given text - that is, an alphabetical
list of the different words occurring in the text, together (usually) with a
count of the number of occurrences of each word - is often performed manually
using a card index. The text words are examined consecutively and each new
word is written on a new card which is inserted in its correct alphabetical
position in the index.

Where punched card equipment is available, a more mechanised procedure
can be used, the text words being punched each on a separate card and the
cards being sorted into alphabetical order using a punched card sorter.

Both of these systems can be adapted for use on a computer.

In the latter case the words of the text can be read to the computer
store and then sorted using one of the procedures described in the previous
section. For reasons derived from the final paragraph of that section
however, this programme would usually be slower than the "card index" pro-
gramme described below.

In the "card index" system, the different text words so far found are
stored in alphabetical order in consecutive positions of the computer store,
each accompanied by a word count showing the number of occurrences to date.
Any incoming word is looked up in this list. If no match is found, it is
inserted in its appropriate position in the store, the words below it being
shifted down. If a match is found, 1 is added to the word count of the
matching word.

(98026) 564

The dictionary search is best conducted using the logarithmic search
described in some detail in a previous paper. 1) A small modification must
be made to that programme to enable it to indicate the appropriate diction-
ary position for words not matched.

In adapting the "card index" system for a computer two difficulties are
encountered, namely

(1) that the (medium access) storage of a computer is, unlike a card
index, not unlimited in size; and

(ii) that the necessity of shifting all words alphabetically later
 makes the insertion of a word into the dictionary a relatively
 long operation.

A number of methods are available to assist in overcoming these problems; and
some of these have been described by A.J.T. Colin 2) and others.

To overcome the problem of limited store size the glossary must be con-
structed in several "cycles", each cycle giving rise to a "sub-glossary".
These must then be combined to form the complete glossary.

Two methods of achieving this are for the programmer (1) to pre-divide
the text into sections and produce a full-alphabet glossary for each, or (2)
to pre-divide the alphabetic range into sections and produce a full-text
glossary for each.

Methods not involving this pre-division follow the lines described above
until the store is full, at which stage several alternatives are possible.

In alternative (3) the first cycle ends here and text input ceases while
the contents of the store are output as the first sub-glossary. The store
is then cleared and text input resumes for the next cycle.

In alternative (4) text input continues, any further unmatched word being
punched on an "overflow" tape, which forms the text for the next cycle.

In alternative (5) also the text input continues, but any further
unmatched word is inserted in its correct position, the final word of the
store (possibly the input word itself) being ejected. For the next cycle
the whole text is re-read, but words in the alphabetic range spanned by the
previous sub-glossary are ignored.

A further variation of (2) or (5) is to punch those words omitted or
ejected from the store during the present cycle (together, if necessary, with
their word counts to date) on an overflow tape, this replacing the text for
the next cycle.

(98026) 565

In (1), (3), (4) the sub-glossaries must be "meshed" in order to pro-
duce the complete glossary. The meshing can, of course, be performed on
the computer.

(1), (3) require more cycles than the other alternatives, since, in
these cases, many words will occur in several cycles. These alternatives
have the advantage, however, that each text word need be input once only.

The times taken by each of the alternatives could, of course, be con-
pared theoretically, but the number of assumptions necessary would make the
conclusions of doubtful validity.

Let us now consider the problem of word shifting. The average number
of words which must be shifted in order to insert the kth new word into the
store is ½k. Thus, to fill a store of capacity n words would require on
average

 n

 ½k  ¼n2
 k=1

word shifts.

Suppose, however, that the store is divided into r equal substores, and
the (current) alphabetical range into r approximately equal Intervals, each
Interval being collected in a separate substore.

Then the filling of each substore requires on average ¼(n/r)2 word shifts,
and the filling of the whole store ¼ n2/r.

This device to reduce shifting can be combined with any of the alterna-
tives described for coping with the problem of limited storage.

The Logical Tree Process

A method of constructing a glossary on a computer basically different
to those described above is the "logical tree" process,3) which enables
word shifting to be eliminated completely.

In this method each different word is stored not only with a word count
but also with two spaces for address references which are Initially blank.
The first word, Do, of the text is read and stored in the first dictionary
position.

Each subsequent text word, WT, is read and compared initially with DO.

(98026) 566

(i) If WT - DO, 1 is added to the word count of DO and the programme
returns to read the next text word.

(ii) If WT << DO, then the first of the two address references of
DO is examined. If this is found to be blank, then WT is in-
serted in the next available dictionary position of the store.
The address of this position is then inserted as the first
address reference of DO, and the programme returns to read the
next text word. If, however, the first reference of DO is
found to contain an address, then WT is next compared with the
word Dp indicated by this address, etc.

(iii) If WT >> DO, the programme follows a path similar to (ii),
but using the second address reference of DO instead of the
first.

The process stops when the whole text has been read, or when the store
is full. The latter situation may be handled by utilising any of alterna-
tives (1), (2), (3), or (4) of the card index process.

After any cycle, the different words forming the "tree" can be re-
trieved in alphabetical order and output, without further word comparison,
by applying a set of rules to the address references.

In order to consider the problem of alphabetical retrieval, it is con-
venient to represent the tree by a pyramid diagram.

Each word of the tree is denoted by a dot, the apex dot denoting DO.
The words W1, W2 indicated by the first and second address references of a
word W are linked to W respectively by left- and right-inclined arrows,
the arrows being directed away from W. (figure 2a).

Then, by the principle of construction of the tree, all words comprising
the sub-tree leading from W via the left-inclined arrow are alphabetically
before W, while those of the sub-tree leading from W via the right-inclined
arrow are alphabetically after W. A typical tree is shown in figure 2b,
the numbers indicating the alphabetical order of the words.

One set of rules for obtaining the alphabetical order of the tree is
then as follows:

Suppose the mth level to be the lowest level of the tree which contains
a word. (In figure 2b, m = 5). If every dot on levels 1, 2, ..., (m-1)
of the tree has both a left- and a right-inclined arrow leading away from it,
the tree is said to be "complete" If not, the tree is made complete by the

(98026) 567

addition of further dots not representing words, these dots being linked to
the tree by broken arrows.

Level s now contains 2s-1 dots, and these are numbered from left to
right starting at 2m-s and increasing by intervals 2m-s+1 to (2m - 2m-s),
where s = 1, 2, ..., m. (figure 2c).

Then the alphabetical order of the original tree is the numerical order
of the dots of the expanded tree with the added dots omitted.

In order to see how these rules may be used on the computer, it is
necessary to note the following points:

(1) The (p + l)th dot from the left on level s of the completed
tree is numbered

2m-s + p.2m-s+1 = (2p+l) 2m-s

Conversely, if m is given and n is any integer < 2m, it is
very simple to find the unique pair of integers (s, p) such that

n = (2p+ l)2m-s

(11) Any dot of the tree can be specified by a sequence of the letters
L and R (its "vector") indicating the directions of successive
diagonals by which it is reached starting from the apex. The
vectors of dots on level s contain (s-1) letters, and the (p+1)th
dot from the left on this level of the completed tree has the
vector obtained by writing p as an (s-1) digit binary integer with
L, R in place of 0, 1 respectively.

Thus, in figure 2c, for n = 14 we have s = 4, p = 3 and the
corresponding vector is LRR.

(iii) The dot of the original tree corresponding to any given dot of
the completed tree is reached merely by following the same vector
through the original tree. The added dots of the completed tree
are those whose vectors indicate in the original tree an arrow
which is not present.

Now it is clear that the value of m may be ascertained during the com-
pilation of the tree.

Thus alphabetical retrieval will be achieved if, for each n in succession
from 1 to 2m - 1, we evaluate (s, p), produce the corresponding vector, and
follow this through the original tree.

(98026) 568

An alternative process for alphabetical retrieval, not requiring the
concept of the completed tree, also makes use of the pyramid diagram. The
process involves a tour of the tree according to the rules given below.

The computer "travels" by keeping in its store a record of the path
which must be taken to reach its current position from the apex. The path,
in this case, is recorded as a sequence of addresses of the words through
which it passes, any two being separated by a letter L or R indicating the
direction of the arrow joining them.

The current position of the computer is the current last address of the
path. For the computer to travel down the tree, addresses are added to the
path; for it to travel up the tree, addresses are deleted.

The rules (which are obeyed in sequence unless otherwise stated) are
as follows:

Rule 1 Start at the apex.

Rule 2 Travel leftwards down the tree stopping when a word is found with
no left arrow leaving it.

Rule 3 Print this word.

Rule 4a If this word has a right arrow leaving it, travel along this arrow.
Then jump to rule 2.

b If not, return up the tree until one left arrow has been ascended.
Then jump to rule 3.

c If the apex is reached without a left arrow being ascended, then
all the words have been printed and the process stops.

Logarithmic Construction Process

The glossary construction procedure described above was designed
specifically for use on a computing machine. Another such process which
also eliminates all word shifting, makes use of the logarithmic dictionary
searching procedure in a manner very different from that described earlier.

The process takes its simplest form if we allot for the storage of
glossary words N storage positions, where

N = 2m - 1 (m integral)

This choice of N is always possible, but may lead to a wastage of up to half

(98026) 569

the available store space. In this case some modification can be made to
the process; for example, preparing a glossary of words with initial letters
A-P in a block of (2m - 1) positions, and a glossary of words with initial
letters Q - Z simultaneously in another block of (2n - 1) positions.

Suppose, therefore, that N = 2m - 1, and that the N positions are num-
bered 0, 1...2m - 2.

Then the first word of text is read, and is inserted in position

P1 = 2
m-1 - 1 (the half~way position), together with a word count which is

initially l.

Each subsequent word, WT, of text is read, and compared, in the first
place, with the word G1 in position P1.

(1) If WT = G1, 1 is added to the word count of G1 and the programme
returns to read the next text word.

(11) If WT  G1, the contents of position P2 are examined, where
P2

= Pl - 2
m-2 (the quarter-way position) if WT << G1

= P1 + 2
m-2 (the three-quarter position) if WT >> G1

If P2 is vacant, WT is inserted into position P2, and the
programme returns to read the next text word.
If P2 contains a word G2, then WT is next compared with G2 and
the programme continues as before, but with G2 instead of G1
and P3 instead of P2 (where P3 = P2 ± 2

m-3).

(iii) If no vacant position has been found after successive examination
of Pl P2, Pm, then the word WT is punched on an overflow
tape, and the programme continues with the next word of text.

The process stops when the whole of the text has been read. A glossary
of the overflow tape must then be made, and this is meshed with the initial
glossary (and with any further overflow glossaries) to produce the final
glossary of the text.

Successive positions Pl P2, Pm are given by

P1 = 2
m-1 - 1, Ps = PS-1 ± 2

m-s (s = 2, 3, m)

the sign being positive if WT >> Gs-1 and negative if WT << GS-1 where

Gs-1 is the word in position Ps-1. The 2
s-1 positions Ps (that is, positions

2m-1  2m-2  2m-s - 1 are said to be on the sth level.

The advantages of this process over the logical tree procedure are

(98026) 570

(1) that the words contained in successive positions 0, 1, 2,
(2m - 2) are in alphabetical order, so that no complex alphabetical
retrieval programme is required, and

(2) that no address references are stored, so that each store position
takes less store space, and more positions can be fitted into the
space available.

A disadvantage of the process is, however, the possibility of ineffi-
cient filling of the store. For example, if the first text word encountered
is "YARD", most of positions 2m-1 to (2m - 2) will remain unfilled through-
out the programme, as will most of positions 2m-2 to (2m-1 - 2), if the first
two words are "MAST" and "MASS" respectively.

Actually the first example illustrates about the worst possible occur-
rence and the effect of any such occurrences can be minimised by giving the
glossary an "artificial start" of the type described for the tree process.3)

The effect will also be less serious if the number of different text words
is much larger than (2m - 1) for, in such a case, even the number of differ-
ent words beginning with Y or Z may become large enough to fill much of the
"semi-isolated" part of the store.

A further precaution which can be included in the programme is the
rejection of WT to the overflow tape instead of its insertion into a vacant
position on the sth level if its "alphabetical distance" from the word with
which it was compared on level (s - l) is less than (s) or greater than 
(s), where  and  are some suitably chosen functions of s.

In this connection, a precise definition of the "alphabetical distance"
of two words W and W, convenient if the words are represented numeri-
cally in the manner of the earlier paper,1) might perhaps be

where 0,1, . . . ,j-1 and 0, 1, . . . k-1 are the numbers re-
presenting successive letters of W and W respectively. (The expres-
sion is, in effect, the difference between the numbers 0, 1, 2 ...,
j-1 and 0, 1, 2, . . . k-1 in the scale of 32.)

In choosing  and  it should be noted that there is nothing to be
gained by rejecting a word from insertion into level m. It should also
be remembered, when meshing the initial and overflow glossaries, that if
a word is rejected at one level some later occurrence of it may be accepted
for a deeper level. Thus it is possible for some occurrences of a word to

(98026) 571

be in the initial glossary and some in the overflow.

Much time will be saved in both of the preceding construction processes
if the word "A" is given separate treatment.

The manual construction of a concordance of a text - that it, a glossary
together with a page/line reference for each occurrence of every word - is
similar to that of a glossary. However, the problems of shifting and over-
flow experienced in the automatic construction are far more acute than the
corresponding problems in glossary construction.

In this case the most convenient method of overcoming the difficulties
has been found to be the prior construction of a glossary.2)

A variation on the usual type of concordance found useful in the
grammatical and stylistic analysis of a text contains, not the page/line re-
ference of the various words, but their position numbers counting from the
beginning of a text.

Such a concordance is constructed in a precisely similar manner to the
more orthodox type, but contains slightly more information. It is useful,
for example, for determining how many times a given word, or class or words,
occurs in a given block of 1,000 words. It can be made to contain all the
information of an orthodox concordance if during construction there is
tabulated the page/line reference of every 200th word or the position number
of the first word in every tenth line.

CONCLUSION

A number of tests are in the course of preparation to enable comparisons
to be made of the relative efficiency of the various glossary procedures
described above. It is hoped to publish the results of this investigation
in due course.

REFERENCES

1. LEVISON M., Information and Control, 1960, 3, 231-247.

2. COLIN, A.J.T., Information and Control, 1960, 3, 211-230

3. BOOTH. A.D., and COLIN, A.J.T., Information and Control, 1960, 3, 327-334.

(98026) 572

Figure l.

Alphabetic arrangement

(98026) 573

An Illustration of the tree diagram convention.

Figure 2c

The tree of Figure 2b, complete and numbered
(with arrow-heads omitted).

(98026) 574

