Yulun Du


2023

pdf
StoryWars: A Dataset and Instruction Tuning Baselines for Collaborative Story Understanding and Generation
Yulun Du | Lydia Chilton
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Collaborative stories, which are texts created through the collaborative efforts of multiple authors with different writing styles and intentions, pose unique challenges for NLP models. Understanding and generating such stories remains an underexplored area due to the lack of open-domain corpora. To address this, we introduce StoryWars, a new dataset of over 40,000 collaborative stories written by 9,400 different authors from an online platform. We design 12 task types, comprising 7 understanding and 5 generation task types, on {pasted macro ‘STORYWARS’}, deriving 101 diverse story-related tasks in total as a multi-task benchmark covering all fully-supervised, few-shot, and zero-shot scenarios. Furthermore, we present our instruction-tuned model, InstructStory, for the story tasks showing that instruction tuning, in addition to achieving superior results in zero-shot and few-shot scenarios, can also obtain the best performance on the fully-supervised tasks in StoryWars, establishing strong multi-task benchmark performances on StoryWars.

2022

pdf
GPS: Genetic Prompt Search for Efficient Few-Shot Learning
Hanwei Xu | Yujun Chen | Yulun Du | Nan Shao | Wang Yanggang | Haiyu Li | Zhilin Yang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Prompt-based techniques have demostrated great potential for improving the few-shot generalization of pretrained language models. However, their performance heavily relies on the manual design of prompts and thus requiring a lot of human efforts. In this paper, we introduce Genetic Prompt Search (GPS) to improve few-shot learning with prompts, which utilizes a genetic algorithm to automatically search for the best prompt.GPS is gradient-free and requires no update of model parameters but only a small validation set. Experiments on diverse datasets proved the effectiveness of GPS, which outperforms manual prompts by a large margin of 2.6 points. Our method is also better than other parameter-efficient tuning methods such as prompt tuning.

pdf
ZeroPrompt: Scaling Prompt-Based Pretraining to 1,000 Tasks Improves Zero-Shot Generalization
Hanwei Xu | Yujun Chen | Yulun Du | Nan Shao | Wang Yanggang | Haiyu Li | Zhilin Yang
Findings of the Association for Computational Linguistics: EMNLP 2022

We propose a multitask pretraining approach ZeroPrompt for zero-shot generalization, focusing on task scaling and zero-shot prompting.While previous models are trained on only a few dozen tasks, we scale to 1,000 tasks for the first time using real-world data. This leads to a crucial discovery that task scaling can be an efficient alternative to model scaling; i.e., the model size has less impact on performance with an extremely large number of tasks. Our results show that task scaling can improve training efficiency by 30 times in FLOPs.Empirically, ZeroPrompt substantially improves both the efficiency and the performance of zero-shot learning across a variety of academic and production datasets.

2017

pdf
DialPort, Gone Live: An Update After A Year of Development
Kyusong Lee | Tiancheng Zhao | Yulun Du | Edward Cai | Allen Lu | Eli Pincus | David Traum | Stefan Ultes | Lina M. Rojas-Barahona | Milica Gasic | Steve Young | Maxine Eskenazi
Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue

DialPort collects user data for connected spoken dialog systems. At present six systems are linked to a central portal that directs the user to the applicable system and suggests systems that the user may be interested in. User data has started to flow into the system.