Yongjun Xu


2024

pdf
Self-Improvement Programming for Temporal Knowledge Graph Question Answering
Zhuo Chen | Zhao Zhang | Zixuan Li | Fei Wang | Yutao Zeng | Xiaolong Jin | Yongjun Xu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Temporal Knowledge Graph Question Answering (TKGQA) aims to answer questions with temporal intent over Temporal Knowledge Graphs (TKGs). The core challenge of this task lies in understanding the complex semantic information regarding multiple types of time constraints (e.g., before, first) in questions. Existing end-to-end methods implicitly model the time constraints by learning time-aware embeddings of questions and candidate answers, which is far from understanding the question comprehensively. Motivated by semantic-parsing-based approaches that explicitly model constraints in questions by generating logical forms with symbolic operators, we design fundamental temporal operators for time constraints and introduce a novel self-improvement Programming method for TKGQA (Prog-TQA). Specifically, Prog-TQA leverages the in-context learning ability of Large Language Models (LLMs) to understand the combinatory time constraints in the questions and generate corresponding program drafts with a few examples given. Then, it aligns these drafts to TKGs with the linking module and subsequently executes them to generate the answers. To enhance the ability to understand questions, Prog-TQA is further equipped with a self-improvement strategy to effectively bootstrap LLMs using high-quality self-generated drafts. Extensive experiments demonstrate the superiority of the proposed Prog-TQA on MultiTQ and CronQuestions datasets, especially in the Hits@1 metric.

pdf
M-RAG: Reinforcing Large Language Model Performance through Retrieval-Augmented Generation with Multiple Partitions
Zheng Wang | Shu Teo | Jieer Ouyang | Yongjun Xu | Wei Shi
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by retrieving relevant memories from an external database. However, existing RAG methods typically organize all memories in a whole database, potentially limiting focus on crucial memories and introducing noise. In this paper, we introduce a multiple partition paradigm for RAG (called M-RAG), where each database partition serves as a basic unit for RAG execution. Based on this paradigm, we propose a novel framework that leverages LLMs with Multi-Agent Reinforcement Learning to optimize different language generation tasks explicitly. Through comprehensive experiments conducted on seven datasets, spanning three language generation tasks and involving three distinct language model architectures, we confirm that M-RAG consistently outperforms various baseline methods, achieving improvements of 11%, 8%, and 12% for text summarization, machine translation, and dialogue generation, respectively.

2023

pdf
An Auxiliary Task Boosted Multi-task Learning Method for Service Account Retrieval with Limited Human Annotation
Yuanzhou Yao | Zhao Zhang | Kaijia Yang | Huasheng Liang | Qiang Yan | Yongjun Xu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Service accounts, including organizations’ official accounts and mini-programs, provide various convenient services for users, and have become crucial components of a number of applications. Therefore, retrieving service accounts quickly and accurately is vital. However, this task suffers from the problem of limited human annotation, i.e., manually assessing account functionality and assigning ratings based on user experience is both labor-intensive and time-consuming. To this end, this paper proposes a novel approach, the Auxiliary task Boosted Multi-Task Learning method (AuxBoost-MTL). Specifically, the proposed method introduces multiple auxiliary tasks, which is able to utilized the log data from our application as supervision, and enhance the performance of the main task, service account retrieval. Furthermore, we introduce an Adaptive Hierarchical Fusion Module (AHF module) into our approach. This module is designed to adaptively perform hierarchical fusion of embeddings from auxiliary tasks into the main task, thereby enhancing the model efficacy. Experiments on two real-world industrial datasets demonstrate the effectiveness of our proposed approach.

2022

pdf
Data Augmentation for Few-Shot Knowledge Graph Completion from Hierarchical Perspective
Yuanzhou Yao | Zhao Zhang | Yongjun Xu | Chao Li
Proceedings of the 29th International Conference on Computational Linguistics

Few-shot knowledge graph completion (FKGC) has become a new research focus in the field of knowledge graphs in recent years, which aims to predict the missing links for relations that only have a few associative triples. Existing models attempt to solve the problem via learning entity and relation representations. However, the limited training data severely hinders the performance of existing models. To this end, we propose to solve the FKGC problem with the data augmentation technique. Specifically, we perform data augmentation from two perspectives, i.e., inter-task view and intra-task view. The former generates new tasks for FKGC, while the latter enriches the support or query set for an individual task. It is worth noting that the proposed framework can be applied to a number of existing FKGC models. Experimental evaluation on two public datasets indicates our model is capable of achieving substantial improvements over baselines.