This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
End-to-end Transformers have demonstrated an impressive success rate for Embodied Instruction Following when the environment has been seen in training. However, they tend to struggle when deployed in an unseen environment. This lack of generalizability is due to the agent’s insensitivity to subtle changes in natural language instructions. To mitigate this issue, we propose explicitly aligning the agent’s hidden states with the instructions via contrastive learning. Nevertheless, the semantic gap between high-level language instructions and the agent’s low-level action space remains an obstacle. Therefore, we further introduce a novel concept of meta-actions to bridge the gap. Meta-actions are ubiquitous action patterns that can be parsed from the original action sequence. These patterns represent higher-level semantics that are intuitively aligned closer to the instructions. When meta-actions are applied as additional training signals, the agent generalizes better to unseen environments. Compared to a strong multi-modal Transformer baseline, we achieve a significant 4.5% absolute gain in success rate in unseen environments of ALFRED Embodied Instruction Following. Additional analysis shows that the contrastive objective and meta-actions are complementary in achieving the best results, and the resulting agent better aligns its states with corresponding instructions, making it more suitable for real-world embodied agents.
Multimodal pre-training has propelled great advancement in vision-and-language research. These large-scale pre-trained models, although successful, fatefully suffer from slow inference speed due to enormous computational cost mainly from cross-modal attention in Transformer architecture. When applied to real-life applications, such latency and computation demand severely deter the practical use of pre-trained models. In this paper, we study Image-text retrieval (ITR), the most mature scenario of V+L application, which has been widely studied even prior to the emergence of recent pre-trained models. We propose a simple yet highly effective approach, LightningDOT that accelerates the inference time of ITR by thousands of times, without sacrificing accuracy. LightningDOT removes the time-consuming cross-modal attention by extracting pre-cached feature indexes offline, and employing instant dot-product matching online, which significantly speeds up retrieval process. In fact, our LightningDOT achieves superior performance across mainstream ITR benchmarks such as Flickr30k and COCO datasets, outperforming existing pre-trained models that consume 1000 times magnitude of computational hours using the same features.
We present HERO, a novel framework for large-scale video+language omni-representation learning. HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer via multimodal fusion, and global video context is captured by a Temporal Transformer. In addition to standard Masked Language Modeling (MLM) and Masked Frame Modeling (MFM) objectives, we design two new pre-training tasks: (i) Video-Subtitle Matching (VSM), where the model predicts both global and local temporal alignment; and (ii) Frame Order Modeling (FOM), where the model predicts the right order of shuffled video frames. HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions. Comprehensive experiments demonstrate that HERO achieves new state of the art on multiple benchmarks over Text-based Video/Video-moment Retrieval, Video Question Answering (QA), Video-and-language Inference and Video Captioning tasks across different domains. We also introduce two new challenging benchmarks How2QA and How2R for Video QA and Retrieval, collected from diverse video content over multimodalities.
Large-scale pre-trained language model such as BERT has achieved great success in language understanding tasks. However, it remains an open question how to utilize BERT for language generation. In this paper, we present a novel approach, Conditional Masked Language Modeling (C-MLM), to enable the finetuning of BERT on target generation tasks. The finetuned BERT (teacher) is exploited as extra supervision to improve conventional Seq2Seq models (student) for better text generation performance. By leveraging BERT’s idiosyncratic bidirectional nature, distilling knowledge learned in BERT can encourage auto-regressive Seq2Seq models to plan ahead, imposing global sequence-level supervision for coherent text generation. Experiments show that the proposed approach significantly outperforms strong Transformer baselines on multiple language generation tasks such as machine translation and text summarization. Our proposed model also achieves new state of the art on IWSLT German-English and English-Vietnamese MT datasets.
We present a large, tunable neural conversational response generation model, DIALOGPT (dialogue generative pre-trained transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response generation and the development of more intelligent open-domain dialogue systems.
Multi-hop reading comprehension requires the model to explore and connect relevant information from multiple sentences/documents in order to answer the question about the context. To achieve this, we propose an interpretable 3-module system called Explore-Propose-Assemble reader (EPAr). First, the Document Explorer iteratively selects relevant documents and represents divergent reasoning chains in a tree structure so as to allow assimilating information from all chains. The Answer Proposer then proposes an answer from every root-to-leaf path in the reasoning tree. Finally, the Evidence Assembler extracts a key sentence containing the proposed answer from every path and combines them to predict the final answer. Intuitively, EPAr approximates the coarse-to-fine-grained comprehension behavior of human readers when facing multiple long documents. We jointly optimize our 3 modules by minimizing the sum of losses from each stage conditioned on the previous stage’s output. On two multi-hop reading comprehension datasets WikiHop and MedHop, our EPAr model achieves significant improvements over the baseline and competitive results compared to the state-of-the-art model. We also present multiple reasoning-chain-recovery tests and ablation studies to demonstrate our system’s ability to perform interpretable and accurate reasoning.
Inspired by how humans summarize long documents, we propose an accurate and fast summarization model that first selects salient sentences and then rewrites them abstractively (i.e., compresses and paraphrases) to generate a concise overall summary. We use a novel sentence-level policy gradient method to bridge the non-differentiable computation between these two neural networks in a hierarchical way, while maintaining language fluency. Empirically, we achieve the new state-of-the-art on all metrics (including human evaluation) on the CNN/Daily Mail dataset, as well as significantly higher abstractiveness scores. Moreover, by first operating at the sentence-level and then the word-level, we enable parallel decoding of our neural generative model that results in substantially faster (10-20x) inference speed as well as 4x faster training convergence than previous long-paragraph encoder-decoder models. We also demonstrate the generalization of our model on the test-only DUC-2002 dataset, where we achieve higher scores than a state-of-the-art model.