Xiaowei Du


2023

pdf
DialCoT Meets PPO: Decomposing and Exploring Reasoning Paths in Smaller Language Models
Chengcheng Han | Xiaowei Du | Che Zhang | Yixin Lian | Xiang Li | Ming Gao | Baoyuan Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Chain-of-Thought (CoT) prompting has successfully enhanced the reasoning capabilities of Large Language Models (LLMs) with at least 100 billion parameters. However, it is ineffective, or even detrimental, to the performance on reasoning tasks in Smaller Language Models (SLMs) with less than 10 billion parameters. In this paper, we propose Dialogue-guided Chain-of-Thought (DialCoT) to improve the reasoning capabilities of SLMs, with the aim of generating intermediate reasoning steps in a dialogue format to guide the model to the final answer. Furthermore, we optimize the model to choose the optimal reasoning path through the Proximal Policy Optimization (PPO) algorithm, further enhancing its reasoning capabilities. Compared to previous methods, our advantages lie in: 1) We transform the process of solving complex reasoning problems into decomposing problems and solving a series of simpler sub-questions, significantly reducing task difficulty and making it more suitable for SLMs. 2) We optimize the model to choose the optimal reasoning path through the PPO algorithm. Comprehensive experiments on four arithmetic reasoning datasets show that our method can achieve significant performance gains over state-of-the-art competitors.