This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Automatic evaluation of natural language generation (NLG) tasks has gained extensive research interests, since it can rapidly assess the performance of large language models (LLMs). However, automatic NLG evaluation struggles with medical QA because it fails to focus on the crucial correctness of medical facts throughout the generated text. To address this, this paper introduces a new data structure, imap, designed to capture key information in questions and answers, enabling evaluators to focus on essential details. The imap comprises three components: Query, Constraint, and Inform, each of which is in the form of term-value pairs to represent medical facts in a structural manner. We then introduce imapScore, which compares the corresponding medical term-value pairs in the imap to score generated texts. We utilize GPT-4 to extract imap from questions, human-annotated answers, and generated responses. To mitigate the diversity in medical terminology for fair term-value pairs comparison, we use a medical knowledge graph to assist GPT-4 in determining matches. To compare imapScore with existing NLG metrics, we establish a new benchmark dataset. The experimental results show that imapScore consistently outperforms state-of-the-art metrics, demonstrating an average improvement of 79.8% in correlation with human scores. Furthermore, incorporating imap into n-gram, embedding, and LLM metrics boosts the base versions, increasing correlation with human scores by averages of 89.9%, 81.7%, and 32.6%, respectively.
The visual question localized-answering (VQLA) system has garnered increasing attention due to its potential as a knowledgeable assistant in surgical education. Apart from providing text-based answers, VQLA can also pinpoint the specific region of interest for better surgical scene understanding. Although recent Transformer-based models for VQLA have obtained promising results, they (1) conduct vanilla text-to-image cross attention, leading to unidirectional and coarse-grained alignment; (2) ignore exploiting the semantics of answers to further boost performance. In this paper, we propose a novel model termed OTAS, which first introduces optimal transport to achieve bidirectional and fine-grained alignment between images and questions, enabling more precise localization. Besides, OTAS incorporates a set of learnable candidate answer embeddings to query the probability of each answer class for a given image-question pair. Through Transformer attention, the candidate answer embeddings interact with the fused features of the image-question pair to make the answer decision. Extensive experiments on two widely-used benchmark datasets demonstrate the superiority of our model over state-of-the-art methods.
Although biomedical entity linking (BioEL) has made significant progress with pre-trained language models, challenges still exist for fine-grained and long-tailed entities. To address these challenges, we present BioELQA, a novel model that treats Biomedical Entity Linking as Multiple Choice Question Answering. BioELQA first obtains candidate entities with a fast retriever, jointly presents the mention and candidate entities to a generator, and then outputs the predicted symbol associated with its chosen entity. This formulation enables explicit comparison of different candidate entities, thus capturing fine-grained interactions between mentions and entities, as well as among entities themselves. To improve generalization for long-tailed entities, we retrieve similar labeled training instances as clues and concatenate the input with retrieved instances for the generator. Extensive experimental results show that BioELQA outperforms state-of-the-art baselines on several datasets.
Dialogue policy learning (DPL) aims to determine an abstract representation (also known as action) to guide what the response should be. Typically, DPL is cast as a sequential decision problem across a series of predefined action candidates. However, such static and narrow actions can limit response diversity and impede the dialogue agent’s adaptability to new scenarios and edge cases. To overcome these challenges, we introduce a novel Joint Transformer Reinforcement Learning framework, coined as JoTR, where a text-to-text Transformer-based model is employed to directly generate dialogue actions. More concretely, JoTR formulates a token-grained policy, facilitating more dynamic and adaptable dialogue action generation without the need for predefined action candidates. This method not only enhances the diversity of responses but also significantly improves the system’s capability to manage unfamiliar scenarios. Furthermore, JoTR utilizes Reinforcement Learning with a reward-shaping mechanism to efficiently fine-tune the token-grained policy. This allows the model to evolve through interactions, thereby enhancing its performance over time. Our extensive evaluation demonstrates that JoTR surpasses previous state-of-the-art models, showing improvements of 9% and 13% in success rate, and 34% and 37% in the diversity of dialogue actions across two benchmark dialogue modeling tasks respectively. These results have been validated by both user simulators and human evaluators. Code and data are available at ://github.com/KwanWaiChung/JoTR.
The first 24 hours’ medication plan is critical to patients with serious or life-threatening illnesses and injuries. An appropriate medication can result in a lower mortality, a shorter length stay and a higher APACHE score. However, in clinical practice, the medication plan is often error-prone, especially when a decision must be made quickly for life-threatening situations in Intensive Care Unit (ICU). Therefore, predicting the effectiveness of the first 24 hours’ medication plan is of great importance in assisting doctors to make proper decisions. Existing effectiveness prediction works usually focus on one specific medicine, one specific disease, or one specific lab test, making it hard to extend to general medicines and diseases in hospital/ICU scenarios. In this paper, we propose to predict medication effectiveness of the first 24 hours in hospital/ICU based on patients’ information. Specifically, we use a knowledge enhanced module to incorporate external knowledge about medications and a medical feature learning module to determine the interaction between diagnosis and medications. To handle the data imbalance problem, we further optimize the proposed model with a contrastive loss. Extensive experimental results on a public dataset show that our model can significantly outperform state-of-the-art methods.
Artificial intelligence (AI)-aided disease prediction has gained extensive research interest due to its capability to support clinical decision-making. Existing works mainly formulate disease prediction as a multi-label classification problem and use historical Electronic Medical Records (EMR) to train supervised models. However, in real-world clinics, such purely data-driven approaches pose two main challenges: 1) long tail problem: there are excessive EMRs for common diseases and insufficient EMRs for rare diseases, thus training over an imbalanced data set could result in a biased model that ignores rare diseases in diagnosis; 2) easily misdiagnosed diseases: some diseases can be easily distinguished while others sharing analogous conditions are much more difficult. General classification models without emphasizing easily misdiagnosed diseases may generate incorrect predictions. To tackle these two problems, we propose a Medical Knowledge-Enhanced Contrastive Learning (MKeCL) approach to disease diagnosis in this paper. MKeCL incorporates medical knowledge graphs and medical licensing exams in modeling in order to compensate for the insufficient information on rare diseases; To handle hard-to-diagnose diseases, MKeCL introduces a contrastive learning strategy to separate diseases that are easily misdiagnosed. Moreover, we establish a new benchmark, named Jarvis-D, which contains clinical EMRs collected from various hospitals. Experiments on real clinical EMRs show that the proposed MKeCL outperforms existing disease prediction approaches, especially in the setting of few-shot and zero-shot scenarios.
Knowledge graph completion (KGC) is a widely used method to tackle incompleteness in knowledge graphs (KGs) by making predictions for missing links. Description-based KGC leverages pre-trained language models to learn entity and relation representations with their names or descriptions, which shows promising results. However, the performance of description-based KGC is still limited by the quality of text and the incomplete structure, as it lacks sufficient entity descriptions and relies solely on relation names, leading to sub-optimal results. To address this issue, we propose MPIKGC, a general framework to compensate for the deficiency of contextualized knowledge and improve KGC by querying large language models (LLMs) from various perspectives, which involves leveraging the reasoning, explanation, and summarization capabilities of LLMs to expand entity descriptions, understand relations, and extract structures, respectively. We conducted extensive evaluation of the effectiveness and improvement of our framework based on four description-based KGC models, for both link prediction and triplet classification tasks. All codes and generated data will be publicly available after review.
Supervised visual captioning models typically require a large scale of images or videos paired with descriptions in a specific language (i.e., the vision-caption pairs) for training. However, collecting and labeling large-scale datasets is time-consuming and expensive for many scenarios and languages. Therefore, sufficient labeled pairs are usually not available. To deal with the label shortage problem, we present a simple yet effective zero-shot approach MultiCapCLIP that can generate visual captions for different scenarios and languages without any labeled vision-caption pairs of downstream datasets. In the training stage, MultiCapCLIP only requires text data for input. Then it conducts two main steps: 1) retrieving concept prompts that preserve the corresponding domain knowledge of new scenarios; 2) auto-encoding the prompts to learn writing styles to output captions in a desired language. In the testing stage, MultiCapCLIP instead takes visual data as input directly to retrieve the concept prompts to generate the final visual descriptions. The extensive experiments on image and video captioning across four benchmarks and four languages (i.e., English, Chinese, German, and French) confirm the effectiveness of our approach. Compared with state-of-the-art zero-shot and weakly-supervised methods, our method achieves 4.8% and 21.5% absolute improvements in terms of BLEU@4 and CIDEr metrics. Our code is available at https://github.com/yangbang18/MultiCapCLIP.
The multi-turn doctor-patient dialogue includes rich medical knowledge, like the symptoms of the patient, the diagnosis and medication suggested by the doctor. If mined and represented properly, such medical knowledge can benefit a large range of clinical applications, including diagnosis assistance and medication recommendation. To derive structured knowledge from free text dialogues, we target a critical task: the Dialogue Medical Information Extraction (DMIE). DMIE aims to detect pre-defined clinical meaningful medical items (symptoms, surgery, etc.) as well as their statuses (positive, negative, etc.) from the dialogue. Existing approaches mainly formulate DMIE as a multi-label classification problem and ignore the relationships among medical items and statuses. Different from previous approaches, we propose a heterogeneous graph to model the relationship between items. We further propose two consecutive attention based modules to enrich the item representation with the dialogue and status. In this manner, we are able to model the relationships among medical items and statuses in the DMIE task. Experimental results on the public benchmark data set show that the proposed model outperforms previous works and achieves the state-of-the-art performance.
Knowledge graph (KG) embedding is a fundamental task in natural language processing, and various methods have been proposed to explore semantic patterns in distinctive ways. In this paper, we propose to learn an ensemble by leveraging existing methods in a relation-aware manner. However, exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods. To address this issue, we propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently. This algorithm has the same computation cost as general ensemble methods but with much better performance. Experimental results on benchmark datasets demonstrate the effectiveness of the proposed method in efficiently searching relation-aware ensemble weights and achieving state-of-the-art embedding performance. The code is public at https://github.com/LARS-research/RelEns.
Multi-modal entity alignment aims to identify equivalent entities between two different multi-modal knowledge graphs, which consist of structural triples and images associated with entities. Most previous works focus on how to utilize and encode information from different modalities, while it is not trivial to leverage multi-modal knowledge in entity alignment because of the modality heterogeneity. In this paper, we propose MCLEA, a Multi-modal Contrastive Learning based Entity Alignment model, to obtain effective joint representations for multi-modal entity alignment. Different from previous works, MCLEA considers task-oriented modality and models the inter-modal relationships for each entity representation. In particular, MCLEA firstly learns multiple individual representations from multiple modalities, and then performs contrastive learning to jointly model intra-modal and inter-modal interactions. Extensive experimental results show that MCLEA outperforms state-of-the-art baselines on public datasets under both supervised and unsupervised settings.
Fast screening and diagnosis are critical in COVID-19 patient treatment. In addition to the gold standard RT-PCR, radiological imaging like X-ray and CT also works as an important means in patient screening and follow-up. However, due to the excessive number of patients, writing reports becomes a heavy burden for radiologists. To reduce the workload of radiologists, we propose DeltaNet to generate medical reports automatically. Different from typical image captioning approaches that generate reports with an encoder and a decoder, DeltaNet applies a conditional generation process. In particular, given a medical image, DeltaNet employs three steps to generate a report: 1) first retrieving related medical reports, i.e., the historical reports from the same or similar patients; 2) then comparing retrieved images and current image to find the differences; 3) finally generating a new report to accommodate identified differences based on the conditional report. We evaluate DeltaNet on a COVID-19 dataset, where DeltaNet outperforms state-of-the-art approaches. Besides COVID-19, the proposed DeltaNet can be applied to other diseases as well. We validate its generalization capabilities on the public IU-Xray and MIMIC-CXR datasets for chest-related diseases.
In spoken question answering, the systems are designed to answer questions from contiguous text spans within the related speech transcripts. However, the most natural way that human seek or test their knowledge is via human conversations. Therefore, we propose a new Spoken Conversational Question Answering task (SCQA), aiming at enabling the systems to model complex dialogues flow given the speech documents. In this task, our main objective is to build the system to deal with conversational questions based on the audio recordings, and to explore the plausibility of providing more cues from different modalities with systems in information gathering. To this end, instead of directly adopting automatically generated speech transcripts with highly noisy data, we propose a novel unified data distillation approach, DDNet, which effectively ingests cross-modal information to achieve fine-grained representations of the speech and language modalities. Moreover, we propose a simple and novel mechanism, termed Dual Attention, by encouraging better alignments between audio and text to ease the process of knowledge transfer. To evaluate the capacity of SCQA systems in a dialogue-style interaction, we assemble a Spoken Conversational Question Answering (Spoken-CoQA) dataset with more than 40k question-answer pairs from 4k conversations. We first show that the performance of the existing state-of-the-art methods significantly degrade on our dataset, hence demonstrating the necessity of incorporating cross-modal information to achieve good performance gains. Our experimental results demonstrate that our proposed method achieves superior performance in spoken conversational question answering. Codes and datasets will be made publicly available.
News recommendation is different from movie or e-commercial recommendation as people usually do not grade the news. Therefore, user feedback for news is always implicit (click behavior, reading time, etc). Inevitably, there are noises in implicit feedback. On one hand, the user may exit immediately after clicking the news as he dislikes the news content, leaving the noise in his positive implicit feedback; on the other hand, the user may be recommended multiple interesting news at the same time and only click one of them, producing the noise in his negative implicit feedback. Opposite implicit feedback could construct more integrated user preferences and help each other to minimize the noise influence. Previous works on news recommendation only used positive implicit feedback and suffered from the noise impact. In this paper, we propose a denoising neural network for news recommendation with positive and negative implicit feedback, named DRPN. DRPN utilizes both feedback for recommendation with a module to denoise both positive and negative implicit feedback to further enhance the performance. Experiments on the real-world large-scale dataset demonstrate the state-of-the-art performance of DRPN.
Medical report generation task, which targets to produce long and coherent descriptions of medical images, has attracted growing research interests recently. Different from the general image captioning tasks, medical report generation is more challenging for data-driven neural models. This is mainly due to 1) the serious data bias and 2) the limited medical data. To alleviate the data bias and make best use of available data, we propose a Competence-based Multimodal Curriculum Learning framework (CMCL). Specifically, CMCL simulates the learning process of radiologists and optimizes the model in a step by step manner. Firstly, CMCL estimates the difficulty of each training instance and evaluates the competence of current model; Secondly, CMCL selects the most suitable batch of training instances considering current model competence. By iterating above two steps, CMCL can gradually improve the model’s performance. The experiments on the public IU-Xray and MIMIC-CXR datasets show that CMCL can be incorporated into existing models to improve their performance.
To assess knowledge proficiency of a learner, multiple choice question is an efficient and widespread form in standard tests. However, the composition of the multiple choice question, especially the construction of distractors is quite challenging. The distractors are required to both incorrect and plausible enough to confuse the learners who did not master the knowledge. Currently, the distractors are generated by domain experts which are both expensive and time-consuming. This urges the emergence of automatic distractor generation, which can benefit various standard tests in a wide range of domains. In this paper, we propose a question and answer guided distractor generation (EDGE) framework to automate distractor generation. EDGE consists of three major modules: (1) the Reforming Question Module and the Reforming Passage Module apply gate layers to guarantee the inherent incorrectness of the generated distractors; (2) the Distractor Generator Module applies attention mechanism to control the level of plausibility. Experimental results on a large-scale public dataset demonstrate that our model significantly outperforms existing models and achieves a new state-of-the-art.
This paper presents a novel framework, MGNER, for Multi-Grained Named Entity Recognition where multiple entities or entity mentions in a sentence could be non-overlapping or totally nested. Different from traditional approaches regarding NER as a sequential labeling task and annotate entities consecutively, MGNER detects and recognizes entities on multiple granularities: it is able to recognize named entities without explicitly assuming non-overlapping or totally nested structures. MGNER consists of a Detector that examines all possible word segments and a Classifier that categorizes entities. In addition, contextual information and a self-attention mechanism are utilized throughout the framework to improve the NER performance. Experimental results show that MGNER outperforms current state-of-the-art baselines up to 4.4% in terms of the F1 score among nested/non-overlapping NER tasks.