Xenia Ohmer


2023

pdf
Separating form and meaning: Using self-consistency to quantify task understanding across multiple senses
Xenia Ohmer | Elia Bruni | Dieuwke Hupkes
Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

At the staggering pace with which the capabilities of large language models (LLMs) are increasing, creating future-proof evaluation sets to assess their understanding becomes more and more challenging. In this paper, we propose a novel paradigm for evaluating LLMs which leverages the idea that correct world understanding should be consistent across different (Fregean) senses of the same meaning. Accordingly, we measure understanding not in terms of correctness but by evaluating consistency across multiple senses that are generated by the model itself. We showcase our approach by instantiating a test where the different senses are different languages, hence using multilingual self-consistency as a litmus test for the model’s understanding and simultaneously addressing the important topic of multilingualism. Taking one of the latest versions of ChatGPT as our object of study, we evaluate multilingual consistency for two different tasks across three different languages. We show that its multilingual consistency is still lacking, and that its task and world understanding are thus not language-independent. As our approach does not require any static evaluation corpora in languages other than English, it can easily and cheaply be extended to different languages and tasks and could become an integral part of future benchmarking efforts.

2022

pdf
Emergence of Hierarchical Reference Systems in Multi-agent Communication
Xenia Ohmer | Marko Duda | Elia Bruni
Proceedings of the 29th International Conference on Computational Linguistics

In natural language, referencing objects at different levels of specificity is a fundamental pragmatic mechanism for efficient communication in context. We develop a novel communication game, the hierarchical reference game, to study the emergence of such reference systems in artificial agents. We consider a simplified world, in which concepts are abstractions over a set of primitive attributes (e.g., color, style, shape). Depending on how many attributes are combined, concepts are more general (“circle”) or more specific (“red dotted circle”). Based on the context, the agents have to communicate at different levels of this hierarchy. Our results show that the agents learn to play the game successfully and can even generalize to novel concepts. To achieve abstraction, they use implicit (omitting irrelevant information) and explicit (indicating that attributes are irrelevant) strategies. In addition, the compositional structure underlying the concept hierarchy is reflected in the emergent protocols, indicating that the need to develop hierarchical reference systems supports the emergence of compositionality.