Saravan Rajmohan


2024

pdf
Everything of Thoughts: Defying the Law of Penrose Triangle for Thought Generation
Ruomeng Ding | Chaoyun Zhang | Lu Wang | Yong Xu | Minghua Ma | Wei Zhang | Si Qin | Saravan Rajmohan | Qingwei Lin | Dongmei Zhang
Findings of the Association for Computational Linguistics ACL 2024

This paper introduce a novel thought prompting approach called ”Everything of Thoughts” (XoT) for Large Language Models (LLMs) to defy the law of ”Penrose triangle” of existing thought paradigms, to achieve three key perspectives in thought generation simultaneously: performance, efficiency, and flexibility. XoT leverages pretrained reinforcement learning and Monte Carlo Tree Search (MCTS) to incorporate external domain knowledge and planning capability into thoughts, thereby enhancing LLMs’ decision-making capabilities. Through the MCTS-LLM collaborative thought revision framework, XoT autonomously produces high-quality comprehensive cognitive mappings with minimal LLM interactions. Additionally, XoT empowers LLMs to utilize flexible cognitive mappings for solving problems with multiple solutions.We evaluate XoT on several challenging problem-solving tasks, including Game of 24, 8-Puzzle, and Pocket Cube. Our results demonstrate that XoT significantly outperforms existing approaches in various dimensions, showcasing its remarkable proficiency in addressing complex problems across diverse domains. The data and code are available at https://github.com/microsoft/Everything-of-Thoughts-XoT.

pdf
Call Me When Necessary: LLMs can Efficiently and Faithfully Reason over Structured Environments
Sitao Cheng | Ziyuan Zhuang | Yong Xu | Fangkai Yang | Chaoyun Zhang | Xiaoting Qin | Xiang Huang | Ling Chen | Qingwei Lin | Dongmei Zhang | Saravan Rajmohan | Qi Zhang
Findings of the Association for Computational Linguistics ACL 2024

Large Language Models (LLMs) have shown potential in reasoning over structured environments, e.g., knowledge graphs and tables. Such tasks typically require multi-hop reasoning, i.e., match natural language utterance with instances in the environment. Previous works adopt LLMs to incrementally build a reasoning path, where LLMs either invoke tools or pick up items by step-by-step interacting with the environment. We propose Reasoning-Path-Editing (Readi), a novel framework where LLMs can efficiently and faithfully reason over structured environments. In Readi, LLMs initially generate a reasoning path given a query, and edit the path only when necessary. We instantiate the path on structured environments and provide feedback to edit the path if anything goes wrong. Experimental results on three KGQA and two TableQA datasets show the effectiveness of Readi, significantly surpassing previous LLM-based methods (by 9.1% Hit@1 on WebQSP, 12.4% on MQA-3H and 9.5% on WTQ), comparable with state-of-the-art fine-tuned methods (67% on CWQ and 74.7% on WebQSP) and substantially boosting the vanilla LLMs (by 14.9% on CWQ). Our code will be available on https://aka.ms/readi.

2023

pdf
Empower Large Language Model to Perform Better on Industrial Domain-Specific Question Answering
Fangkai Yang | Pu Zhao | Zezhong Wang | Lu Wang | Bo Qiao | Jue Zhang | Mohit Garg | Qingwei Lin | Saravan Rajmohan | Dongmei Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Large Language Model (LLM) has gained popularity and achieved remarkable results in open-domain tasks, but its performance in real industrial domain-specific scenarios is average due to its lack of specific domain knowledge. This issue has attracted widespread attention, but there are few relevant benchmarks available. In this paper, we provide a benchmark Question Answering (QA) dataset named MSQA, centered around Microsoft products and IT technical problems encountered by customers. This dataset contains industry cloud-specific QA knowledge, an area not extensively covered in general LLMs, making it well-suited for evaluating methods aiming to enhance LLMs’ domain-specific capabilities. In addition, we propose a new model interaction paradigm that can empower LLM to achieve better performance on domain-specific tasks where it is not proficient. Extensive experiments demonstrate that the approach following our method outperforms the commonly used LLM with retrieval methods. We make our source code and sample data available at: https://aka.ms/Microsoft_QA.