This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Unsupervised cross-lingual projection for part-of-speech (POS) tagging relies on the use of parallel data to project POS tags from a source language for which a POS tagger is available onto a target language across word-level alignments. The projected tags then form the basis for learning a POS model for the target language. However, languages with rich morphology often yield sparse word alignments because words corresponding to the same citation form do not align well. We hypothesize that for morphologically complex languages, it is more efficient to use the stem rather than the word as the core unit of abstraction. Our contributions are: 1) we propose an unsupervised stem-based cross-lingual approach for POS tagging for low-resource languages of rich morphology; 2) we further investigate morpheme-level alignment and projection; and 3) we examine whether the use of linguistic priors for morphological segmentation improves POS tagging. We conduct experiments using six source languages and eight morphologically complex target languages of diverse typologies. Our results show that the stem-based approach improves the POS models for all the target languages, with an average relative error reduction of 10.3% in accuracy per target language, and outperforms the word-based approach that operates on three-times more data for about two thirds of the language pairs we consider. Moreover, we show that morpheme-level alignment and projection and the use of linguistic priors for morphological segmentation further improve POS tagging.
Polysynthetic languages present a challenge for morphological analysis due to the complexity of their words and the lack of high-quality annotated datasets needed to build and/or evaluate computational models. The contribution of this work is twofold. First, using linguists’ help, we generate and contribute high-quality annotated data for two low-resource polysynthetic languages for two tasks: morphological segmentation and part-of-speech (POS) tagging. Second, we present the results of state-of-the-art unsupervised approaches for these two tasks on Adyghe and Inuktitut. Our findings show that for these polysynthetic languages, using linguistic priors helps the task of morphological segmentation and that using stems rather than words as the core unit of abstraction leads to superior performance on POS tagging.
Recent low-resource named-entity recognition (NER) work has shown impressive gains by leveraging a single multilingual model trained using distantly supervised data derived from cross-lingual knowledge bases. In this work, we investigate such approaches by leveraging Wikidata to build large-scale NER datasets of Tweets and propose two orthogonal improvements for low-resource NER in the Twitter social media domain: (1) leveraging domain-specific pre-training on Tweets; and (2) building a model for each language family rather than an all-in-one single multilingual model. For (1), we show that mBERT with Tweet pre-training outperforms the state-of-the-art multilingual transformer-based language model, LaBSE, by a relative increase of 34.6% in F1 when evaluated on Twitter data in a language-agnostic multilingual setting. For (2), we show that learning NER models for language families outperforms a single multilingual model by relative increases of 14.1%, 15.8% and 45.3% in F1 when utilizing mBERT, mBERT with Tweet pre-training and LaBSE, respectively. We conduct analyses and present examples for these observed improvements.
We describe a fully unsupervised cross-lingual transfer approach for part-of-speech (POS) tagging under a truly low resource scenario. We assume access to parallel translations between the target language and one or more source languages for which POS taggers are available. We use the Bible as parallel data in our experiments: small size, out-of-domain and covering many diverse languages. Our approach innovates in three ways: 1) a robust approach of selecting training instances via cross-lingual annotation projection that exploits best practices of unsupervised type and token constraints, word-alignment confidence and density of projected POS, 2) a Bi-LSTM architecture that uses contextualized word embeddings, affix embeddings and hierarchical Brown clusters, and 3) an evaluation on 12 diverse languages in terms of language family and morphological typology. In spite of the use of limited and out-of-domain parallel data, our experiments demonstrate significant improvements in accuracy over previous work. In addition, we show that using multi-source information, either via projection or output combination, improves the performance for most target languages.
Byte-Pair Encoding (BPE) (Sennrich et al., 2016) has become a standard pre-processing step when building neural machine translation systems. However, it is not clear whether this is an optimal strategy in all settings. We conduct a controlled comparison of subword segmentation strategies for translating two low-resource morphologically rich languages (Swahili and Turkish) into English. We show that segmentations based on a unigram language model (Kudo, 2018) yield comparable BLEU and better recall for translating rare source words than BPE.
At about the midpoint of the IARPA MATERIAL program in October 2019, an evaluation was conducted on systems’ abilities to find Lithuanian documents based on English queries. Subsequently, both the Lithuanian test collection and results from all three teams were made available for detailed analysis. This paper capitalizes on that opportunity to begin to look at what’s working well at this stage of the program, and to identify some promising directions for future work.
Computational morphological segmentation has been an active research topic for decades as it is beneficial for many natural language processing tasks. With the high cost of manually labeling data for morphology and the increasing interest in low-resource languages, unsupervised morphological segmentation has become essential for processing a typologically diverse set of languages, whether high-resource or low-resource. In this paper, we present and release MorphAGram, a publicly available framework for unsupervised morphological segmentation that uses Adaptor Grammars (AG) and is based on the work presented by Eskander et al. (2016). We conduct an extensive quantitative and qualitative evaluation of this framework on 12 languages and show that the framework achieves state-of-the-art results across languages of different typologies (from fusional to polysynthetic and from high-resource to low-resource).
Polysynthetic languages pose a challenge for morphological analysis due to the root-morpheme complexity and to the word class “squish”. In addition, many of these polysynthetic languages are low-resource. We propose unsupervised approaches for morphological segmentation of low-resource polysynthetic languages based on Adaptor Grammars (AG) (Eskander et al., 2016). We experiment with four languages from the Uto-Aztecan family. Our AG-based approaches outperform other unsupervised approaches and show promise when compared to supervised methods, outperforming them on two of the four languages.
Morphological segmentation is beneficial for several natural language processing tasks dealing with large vocabularies. Unsupervised methods for morphological segmentation are essential for handling a diverse set of languages, including low-resource languages. Eskander et al. (2016) introduced a Language Independent Morphological Segmenter (LIMS) using Adaptor Grammars (AG) based on the best-on-average performing AG configuration. However, while LIMS worked best on average and outperforms other state-of-the-art unsupervised morphological segmentation approaches, it did not provide the optimal AG configuration for five out of the six languages. We propose two language-independent classifiers that enable the selection of the optimal or nearly-optimal configuration for the morphological segmentation of unseen languages.
We investigate using Adaptor Grammars for unsupervised morphological segmentation. Using six development languages, we investigate in detail different grammars, the use of morphological knowledge from outside sources, and the use of a cascaded architecture. Using cross-validation on our development languages, we propose a system which is language-independent. We show that it outperforms two state-of-the-art systems on 5 out of 6 languages.
Arabic dialects present a special problem for natural language processing because there are few resources, they have no standard orthography, and have not been studied much. However, as more and more written dialectal Arabic is found in social media, NLP for Arabic dialects becomes an important goal. We present a methodology for creating a morphological analyzer and a morphological tagger for dialectal Arabic, and we illustrate it on Egyptian and Levantine Arabic. To our knowledge, these are the first analyzer and tagger for Levantine.
We present new language resources for Moroccan and Sanaani Yemeni Arabic. The resources include corpora for each dialect which have been morphologically annotated, and morphological analyzers for each dialect which are derived from these corpora. These are the first sets of resources for Moroccan and Yemeni Arabic. The resources will be made available to the public.
Text preprocessing is an important and necessary task for all NLP applications. A simple variation in any preprocessing step may drastically affect the final results. Moreover replicability and comparability, as much as feasible, is one of the goals of our scientific enterprise, thus building systems that can ensure the consistency in our various pipelines would contribute significantly to our goals. The problem has become quite pronounced with the abundance of NLP tools becoming more and more available yet with different levels of specifications. In this paper, we present a dynamic unified preprocessing framework and tool, SPLIT, that is highly configurable based on user requirements which serves as a preprocessing tool for several tools at once. SPLIT aims to standardize the implementations of the most important preprocessing steps by allowing for a unified API that could be exchanged across different researchers to ensure complete transparency in replication. The user is able to select the required preprocessing tasks among a long list of preprocessing steps. The user is also able to specify the order of execution which in turn affects the final preprocessing output.
This paper describes the parallel development of an Egyptian Arabic Treebank and a morphological analyzer for Egyptian Arabic (CALIMA). By the very nature of Egyptian Arabic, the data collected is informal, for example Discussion Forum text, which we use for the treebank discussed here. In addition, Egyptian Arabic, like other Arabic dialects, is sufficiently different from Modern Standard Arabic (MSA) that tools and techniques developed for MSA cannot be simply transferred over to work on Egyptian Arabic work. In particular, a morphological analyzer for Egyptian Arabic is needed to mediate between the written text and the segmented, vocalized form used for the syntactic trees. This led to the necessity of a feedback loop between the treebank team and the analyzer team, as improvements in each area were fed to the other. Therefore, by necessity, there needed to be close cooperation between the annotation team and the tool development team, which was to their mutual benefit. Collaboration on this type of challenge, where tools and resources are limited, proved to be remarkably synergistic and opens the way to further fruitful work on Arabic dialects.
We introduce an electronic three-way lexicon, Tharwa, comprising Dialectal Arabic, Modern Standard Arabic and English correspondents. The paper focuses on Egyptian Arabic as the first pilot dialect for the resource, with plans to expand to other dialects of Arabic in later phases of the project. We describe Tharwas creation process and report on its current status. The lexical entries are augmented with various elements of linguistic information such as POS, gender, rationality, number, and root and pattern information. The lexicon is based on a compilation of information from both monolingual and bilingual existing resources such as paper dictionaries and electronic, corpus-based dictionaries. Multiple levels of quality checks are performed on the output of each step in the creation process. The importance of this lexicon lies in the fact that it is the first resource of its kind bridging multiple variants of Arabic with English. Furthermore, it is a wide coverage lexical resource containing over 73,000 Egyptian entries. Tharwa is publicly available. We believe it will have a significant impact on both Theoretical Linguistics as well as Computational Linguistics research.
In this paper, we present MADAMIRA, a system for morphological analysis and disambiguation of Arabic that combines some of the best aspects of two previously commonly used systems for Arabic processing, MADA (Habash and Rambow, 2005; Habash et al., 2009; Habash et al., 2013) and AMIRA (Diab et al., 2007). MADAMIRA improves upon the two systems with a more streamlined Java implementation that is more robust, portable, extensible, and is faster than its ancestors by more than an order of magnitude. We also discuss an online demo (see http://nlp.ldeo.columbia.edu/madamira/) that highlights these aspects.