This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
As generative dialog models become ubiquitous in real-world applications, it is paramount to ensure a harmless generation. There are two major challenges when enforcing safety to open-domain chatbots. Firstly, it is impractical to provide training data reflecting the desired response to all emerging forms of toxicity (generalisation challenge). Secondly, implementing safety features may compromise the quality of the conversation (trade-off challenge). To tackle the challenges, this paper introduces a regularized fine-tuning approach called FlatGD. By employing a safety-tailored loss, we translate better optimization to more safety. To ensure better optimization, FlatGD penalizes sharp trajectories of loss curve, encouraging flatness of the converged local minima. Experimental results on datasets of “BAD” and “prosocial dialog” demonstrate that our model outperforms the current baselines in reducing toxicity while preserving the conversation quality. Moreover, compared to other baselines, FlatGD can better generalize to unseen toxic data.
Object hallucination poses a significant challenge in vision-language (VL) models, often leading to the generation of nonsensical or unfaithful responses with non-existent objects. However, the absence of a general measurement for evaluating object hallucination in VL models has hindered our understanding and ability to mitigate this issue. In this work, we present NOPE (Negative Object Presence Evaluation), a novel benchmark designed to assess object hallucination in VL models through visual question answering (VQA). We propose a cost-effective and scalable approach utilizing large language models to generate 29.5k synthetic negative pronoun (NegP) data of high quality for NOPE. We extensively investigate the performance of 10 state-of-the-art VL models in discerning the non-existence of objects in visual questions, where the ground truth answers are denoted as (e.g., “none”). Additionally, we evaluate their standard performance on visual questions on 9 other VQA datasets. Through our experiments, we demonstrate that no VL model is immune to the vulnerability of object hallucination, as all models achieve accuracy below 10% on NegP. Furthermore, we uncover that lexically diverse visual questions, question types with large scopes, and scene-relevant objects capitalize the risk of object hallucination in VL models.
We propose to measure political bias in LLMs by analyzing both the content and style of their generated content regarding political issues. Existing benchmarks and measures focus on gender and racial biases. However, political bias exists in LLMs and can lead to polarization and other harms in downstream applications. In order to provide transparency to users, we advocate that there should be fine-grained and explainable measures of political biases generated by LLMs. Our proposed measure looks at different political issues such as reproductive rights and climate change, at both the content (the substance of the generation) and the style (the lexical polarity) of such bias. We measured the political bias in eleven open-sourced LLMs and showed that our proposed framework is easily scalable to other topics and is explainable.
Large language models (LLMs) show remarkable human-like capability in various domains and languages. To bridge this quality gap, we introduce Cendol, a collection of Indonesian LLMs encompassing both decoder-only and encoder-decoder architectures across a range of model sizes. We highlight Cendol’s effectiveness across a diverse array of tasks, attaining ~20% improvement, and demonstrate its capability to generalize to unseen tasks and indigenous languages of Indonesia. Furthermore, Cendol models showcase improved human favorability despite their limitations in capturing indigenous knowledge and cultural values in Indonesia. In addition, we discuss the shortcomings of parameter-efficient tunings, such as LoRA, for language adaptation. Alternatively, we propose the usage of vocabulary adaptation to enhance efficiency. Lastly, we evaluate the safety of Cendol and showcase that safety in pre-training in one language such as English is transferable to low-resource languages, such as Indonesian, even without RLHF and safety fine-tuning.
In-context learning (ICL) empowers large language models (LLMs) to perform diverse tasks in underrepresented languages using only short in-context information, offering a crucial avenue for narrowing the gap between high-resource and low-resource languages.Nonetheless, there is only a handful of works explored ICL for low-resource languages with most of them focusing on relatively high-resource languages, such as French and Spanish. In this work, we extensively study ICL and its cross-lingual variation (X-ICL) on 25 low-resource and 7 relatively higher-resource languages.Our study not only assesses the effectiveness of ICL with LLMs in low-resource languages but also identifies the shortcomings of in-context label alignment, and introduces a more effective alternative: query alignment. Moreover, we provide valuable insights into various facets of ICL for low-resource languages.Our study concludes the significance of few-shot in-context information on enhancing the low-resource understanding quality of LLMs through semantically relevant information by closing the language gap in the target language and aligning the semantics between the targeted low-resource and the high-resource language that the model is proficient in. Our work highlights the importance of advancing ICL research, particularly for low-resource languages.
Short-form video hashtag recommendation (SVHR) aims to recommend hashtags to content creators from videos and corresponding descriptions. Most prior studies regard SVHR as a classification or ranking problem and select hashtags from a set of limited candidates. However, in reality, users can create new hashtags, and trending hashtags change rapidly over time on social media. Both of these properties cannot be easily modeled with classification approaches. To bridge this gap, we formulate SVHR as a generation task that better represents how hashtags are created naturally. Additionally, we propose the Guided Generative Model (GGM) where we augment the input features by retrieving relevant hashtags from a large-scale hashtag pool as extra guidance signals. Experimental results on two short-form video datasets show that our generative models outperform strong classification baselines, and the guidance signals further boost the performance by 8.11 and 2.17 absolute ROUGE-1 scores on average, respectively. We also perform extensive analyses including human evaluation, demonstrating that our generative model can create meaningful and relevant novel hashtags while achieving state-of-the-art performance on known hashtags
Many NLP classification tasks, such as sexism/racism detection or toxicity detection, are based on human values. Yet, human values can vary under diverse cultural conditions. Therefore, we introduce a framework for value-aligned classification that performs prediction based on explicitly written human values in the command. Along with the task, we propose a practical approach that distills value-aligned knowledge from large-scale language models (LLMs) to construct value-aligned classifiers in two steps. First, we generate value-aligned training data from LLMs by prompt-based few-shot learning. Next, we fine-tune smaller classification models with the generated data for the task. Empirical results show that our VA-Models surpass multiple baselines by at least 15.56% on the F1-score, including few-shot learning with OPT-175B and existing text augmentation methods. We suggest that using classifiers with explicit human value input improves both inclusivity & explainability in AI.
Closed-book question answering (QA) requires a model to directly answer an open-domain question without access to any external knowledge. Prior work on closed-book QA either directly finetunes or prompts a pretrained language model (LM) to leverage the stored knowledge. However, they do not fully exploit the parameterized knowledge. To address this inefficiency, we propose a two-stage, closed-book QA framework which employs a coarse-to-fine approach to extract the relevant knowledge and answer a question. We first generate a related context for a given question by prompting a pretrained LM. We then prompt the same LM to generate an answer using the generated context and the question. Additionally, we marginalize over the generated contexts to improve the accuracies and reduce context uncertainty. Experimental results on three QA benchmarks show that our method significantly outperforms previous closed-book QA methods. For example on TriviaQA, our method improves exact match accuracy from 55.3% to 68.6%, and is on par with open-book QA methods (68.6% vs. 68.0%). Our results show that our new methodology is able to better exploit the stored knowledge in pretrained LMs without adding extra learnable parameters or needing finetuning, and paves the way for hybrid models that integrate pretrained LMs with external knowledge.
Dialogue systems can leverage large pre-trained language models and knowledge to generate fluent and informative responses. However, these models are still prone to produce hallucinated responses not supported by the input source, which greatly hinders their application. The heterogeneity between external knowledge and dialogue context challenges representation learning and source integration, which further contributes to unfaithfulness. To handle this challenge and generate more faithful responses, this paper presents RHO (ρ) utilizing the representations of linked entities and relation predicates from a knowledge graph (KG). We propose (1) local knowledge grounding to combine textual embeddings with the corresponding KG embeddings; and (2) global knowledge grounding to equip RHO with multi-hop reasoning abilities via the attention mechanism. In addition, we devise a response re-ranking technique based on walks over KG sub-graphs for better conversational reasoning. Experimental results on OpenDialKG (Moon et al., 2019) show that our approach significantly outperforms state-of-the-art methods on both automatic and human evaluation by a large margin, especially in hallucination reduction (17.54% in FeQA (Durmus et al., 2020)).
We present NusaCrowd, a collaborative initiative to collect and unify existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have brought together 137 datasets and 118 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their value is demonstrated through multiple experiments.NusaCrowd’s data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and the local languages of Indonesia. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and the local languages of Indonesia. Our work strives to advance natural language processing (NLP) research for languages that are under-represented despite being widely spoken.
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks. However, the practical deployment still faces challenges, notably the issue of “hallucination”, where models generate plausible-sounding but unfaithful or nonsensical information. This issue becomes particularly critical in the medical domain due to the uncommon professional concepts and potential social risks involved. This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets. Our investigation centers on the identification and comprehension of common problematic answers, with a specific emphasis on hallucination. To tackle this challenge, we present an interactive self-reflection methodology that incorporates knowledge acquisition and answer generation. Through this feedback process, our approach steadily enhances the factuality, consistency, and entailment of the generated answers. Consequently, we harness the interactivity and multitasking ability of LLMs and produce progressively more precise and accurate answers. Experimental results on both automatic and human evaluation demonstrate the superiority of our approach in hallucination reduction compared to baselines.
Fine-tuning pre-trained language models (LMs) has become the de facto standard in many NLP tasks. Nevertheless, fine-tuned LMs are still prone to robustness issues, such as adversarial robustness and model calibration. Several perspectives of robustness for LMs have been studied independently, but lacking a unified consideration in multiple perspectives. In this paper, we propose Robustifying LMs via Adversarial perturbation with Selective Training (RoAST), a simple yet effective fine-tuning technique to enhance the multi-perspective robustness of LMs in a unified way. RoAST effectively incorporates two important sources for the model robustness, robustness on the perturbed inputs and generalizable knowledge in pre-trained LMs. To be specific, RoAST introduces adversarial perturbation during fine-tuning while the model parameters are selectively updated upon their relative importance to minimize unnecessary deviation. Under a unified evaluation of fine-tuned LMs by incorporating four representative perspectives of model robustness, we demonstrate the effectiveness of RoAST compared to state-of-the-art fine-tuning methods on six different types of LMs, which indicates its usefulness in practice.
Framing bias plays a significant role in exacerbating political polarization by distorting the perception of actual events. Media outlets with divergent political stances often use polarized language in their reporting of the same event. We propose a new loss function that encourages the model to minimize the polarity difference between the polarized input articles to reduce framing bias. Specifically, our loss is designed to jointly optimize the model to map polarity ends bidirectionally. Our experimental results demonstrate that incorporating the proposed polarity minimization loss leads to a substantial reduction in framing bias when compared to a BART-based multi-document summarization model. Notably, we find that the effectiveness of this approach is most pronounced when the model is trained to minimize the polarity loss associated with informational framing bias (i.e., skewed selection of information to report).
Natural language processing (NLP) has a significant impact on society via technologies such as machine translation and search engines. Despite its success, NLP technology is only widely available for high-resource languages such as English and Chinese, while it remains inaccessible to many languages due to the unavailability of data resources and benchmarks. In this work, we focus on developing resources for languages in Indonesia. Despite being the second most linguistically diverse country, most languages in Indonesia are categorized as endangered and some are even extinct. We develop the first-ever parallel resource for 10 low-resource languages in Indonesia. Our resource includes sentiment and machine translation datasets, and bilingual lexicons. We provide extensive analyses and describe challenges for creating such resources. We hope this work can spark NLP research on Indonesian and other underrepresented languages.
Large-scale vision-language pre-trained (VLP) models are prone to hallucinate non-existent visual objects when generating text based on visual information. In this paper, we systematically study the object hallucination problem from three aspects. First, we examine recent state-of-the-art VLP models, showing that they still hallucinate frequently and models achieving better scores on standard metrics (e.g., CIDEr) could be more unfaithful. Second, we investigate how different types of image encoding in VLP influence hallucination, including region-based, grid-based, and patch-based. Surprisingly, we find that patch-based features perform the best and smaller patch resolution yields a non-trivial reduction in object hallucination. Third, we decouple various VLP objectives and demonstrate that token-level image-text alignment and controlled generation are crucial to reducing hallucination. Based on that, we propose a simple yet effective VLP loss named ObjMLM to further mitigate object hallucination. Results show that it reduces object hallucination by up to 17.4% when tested on two benchmarks (COCO Caption for in-domain and NoCaps for out-of-domain evaluation).
The demand for multimodal dialogue systems has been rising in various domains, emphasizing the importance of interpreting multimodal inputs from conversational and situational contexts. One main challenge in multimodal dialogue understanding is multimodal object identification, which constitutes the ability to identify objects relevant to a multimodal user-system conversation. We explore three methods to tackle this problem and evaluate them on the largest situated dialogue dataset, SIMMC 2.1. Our best method, scene-dialogue alignment, improves the performance by ~20% F1-score compared to the SIMMC 2.1 baselines. We provide analysis and discussion regarding the limitation of our methods and the potential directions for future works.
Inference, especially those derived from inductive processes, is a crucial component in our conversation to complement the information implicitly or explicitly conveyed by a speaker. While recent large language models show remarkable advances in inference tasks, their performance in inductive reasoning, where not all information is present in the context, is far behind deductive reasoning. In this paper, we analyze the behavior of the models based on the task difficulty defined by the semantic information gap – which distinguishes inductive and deductive reasoning. Our analysis reveals that the information gap between dialogue contexts and desired inferences renders the inductive inference process more challenging. To mitigate this information gap, we investigate a contrastive learning approach by feeding negative samples. Our experiments suggest negative samples help models understand what is wrong and improve their inference generations.
Hate speech detection is complex; it relies on commonsense reasoning, knowledge of stereotypes, and an understanding of social nuance that differs from one culture to the next. It is also difficult to collect a large-scale hate speech annotated dataset. In this work, we frame this problem as a few-shot learning task, and show significant gains with decomposing the task into its “constituent” parts. In addition, we see that infusing knowledge from reasoning datasets (e.g. ATOMIC2020) improves the performance even further. Moreover, we observe that the trained models generalize to out-of-distribution datasets, showing the superiority of task decomposition and knowledge infusion compared to previously used methods. Concretely, our method outperforms the baseline by 17.83% absolute gain in the 16-shot case.
To diversify and enrich generated dialogue responses, knowledge-grounded dialogue has been investigated in recent years. The existing methods tackle the knowledge grounding challenge by retrieving the relevant sentences over a large corpus and augmenting the dialogues with explicit extra information. Despite their success, however, the existing works have drawbacks on the inference efficiency. This paper proposes KnowExpert, an end-to-end framework to bypass the explicit retrieval process and inject knowledge into the pre-trained language models with lightweight adapters and adapt to the knowledge-grounded dialogue task. To the best of our knowledge, this is the first attempt to tackle this challenge without retrieval in this task under an open-domain chit-chat scenario. The experimental results show that KnowExpert performs comparably with some retrieval-based baselines while being time-efficient in inference, demonstrating the effectiveness of our proposed method.
Generating a short story out of an image is arduous. Unlike image captioning, story generation from an image poses multiple challenges: preserving the story coherence, appropriately assessing the quality of the story, steering the generated story into a certain style, and addressing the scarcity of image-story pair reference datasets limiting supervision during training. In this work, we introduce Plug-and-Play Story Teller (PPST) and improve image-to-story generation by: 1) alleviating the data scarcity problem by incorporating large pre-trained models, namely CLIP and GPT-2, to facilitate a fluent image-to-text generation with minimal supervision, and 2) enabling a more style-relevant generation by incorporating stylistic adapters to control the story generation. We conduct image-to-story generation experiments with non-styled, romance-styled, and action-styled PPST approaches and compare our generated stories with those of previous work over three aspects, i.e., story coherence, image-story relevance, and style fitness, using both automatic and human evaluation. The results show that PPST improves story coherence and has better image-story relevance, but has yet to be adequately stylistic.
Large pre-trained language models (LMs) have been widely adopted in biomedical and clinical domains, introducing many powerful LMs such as bio-lm and BioELECTRA. However, the applicability of these methods to real clinical use cases is hindered, due to the limitation of pre-trained LMs in processing long textual data with thousands of words, which is a common length for a clinical note. In this work, we explore long-range adaptation from such LMs with Longformer, allowing the LMs to capture longer clinical notes context. We conduct experiments on three n2c2 challenges datasets and a longitudinal clinical dataset from Hong Kong Hospital Authority electronic health record (EHR) system to show the effectiveness and generalizability of this concept, achieving ~10% F1-score improvement. Based on our experiments, we conclude that capturing a longer clinical note interval is beneficial to the model performance, but there are different cut-off intervals to achieve the optimal performance for different target variables.
Media news framing bias can increase political polarization and undermine civil society. The need for automatic mitigation methods is therefore growing. We propose a new task, a neutral summary generation from multiple news articles of the varying political leaningsto facilitate balanced and unbiased news reading. In this paper, we first collect a new dataset, illustrate insights about framing bias through a case study, and propose a new effective metric and model (NeuS-Title) for the task. Based on our discovery that title provides a good signal for framing bias, we present NeuS-Title that learns to neutralize news content in hierarchical order from title to article. Our hierarchical multi-task learning is achieved by formatting our hierarchical data pair (title, article) sequentially with identifier-tokens (“TITLE=>”, “ARTICLE=>”) and fine-tuning the auto-regressive decoder with the standard negative log-likelihood objective. We then analyze and point out the remaining challenges and future directions. One of the most interesting observations is that neural NLG models can hallucinate not only factually inaccurate or unverifiable content but also politically biased content.
Self-supervised pre-training methods have brought remarkable breakthroughs in the understanding of text, image, and speech. Recent developments in genomics has also adopted these pre-training methods for genome understanding. However, they focus only on understanding haploid sequences, which hinders their applicability towards understanding genetic variations, also known as single nucleotide polymorphisms (SNPs), which is crucial for genome-wide association study. In this paper, we introduce SNP2Vec, a scalable self-supervised pre-training approach for understanding SNP. We apply SNP2Vec to perform long-sequence genomics modeling, and we evaluate the effectiveness of our approach on predicting Alzheimer’s disease risk in a Chinese cohort. Our approach significantly outperforms existing polygenic risk score methods and all other baselines, including the model that is trained entirely with haploid sequences.
While pre-trained language models play a vital role in modern language processing tasks, but not every language can benefit from them. Most existing research on pre-trained language models focuses primarily on widely-used languages such as English, Chinese, and Indo-European languages. Additionally, such schemes usually require extensive computational resources alongside a large amount of data, which is infeasible for less-widely used languages. We aim to address this research niche by building a language model that understands the linguistic phenomena in the target language which can be trained with low-resources. In this paper, we discuss Korean language modeling, specifically methods for language representation and pre-training methods. With our Korean-specific language representation, we are able to build more powerful language models for Korean understanding, even with fewer resources. The paper proposes chunk-wise reconstruction of the Korean language based on a widely used transformer architecture and bidirectional language representation. We also introduce morphological features such as Part-of-Speech (PoS) into the language understanding by leveraging such information during the pre-training. Our experiment results prove that the proposed methods improve the model performance of the investigated Korean language understanding tasks.
Automatic speech recognition (ASR) on low resource languages improves the access of linguistic minorities to technological advantages provided by artificial intelligence (AI). In this paper, we address the problem of data scarcity for the Hong Kong Cantonese language by creating a new Cantonese dataset. Our dataset, Multi-Domain Cantonese Corpus (MDCC), consists of 73.6 hours of clean read speech paired with transcripts, collected from Cantonese audiobooks from Hong Kong. It comprises philosophy, politics, education, culture, lifestyle and family domains, covering a wide range of topics. We also review all existing Cantonese datasets and analyze them according to their speech type, data source, total size and availability. We further conduct experiments with Fairseq S2T Transformer, a state-of-the-art ASR model, on the biggest existing dataset, Common Voice zh-HK, and our proposed MDCC, and the results show the effectiveness of our dataset. In addition, we create a powerful and robust Cantonese ASR model by applying multi-dataset learning on MDCC and Common Voice zh-HK.
With the rise of deep learning and intelligent vehicles, the smart assistant has become an essential in-car component to facilitate driving and provide extra functionalities. In-car smart assistants should be able to process general as well as car-related commands and perform corresponding actions, which eases driving and improves safety. However, there is a data scarcity issue for low resource languages, hindering the development of research and applications. In this paper, we introduce a new dataset, Cantonese In-car Audio-Visual Speech Recognition (CI-AVSR), for in-car command recognition in the Cantonese language with both video and audio data. It consists of 4,984 samples (8.3 hours) of 200 in-car commands recorded by 30 native Cantonese speakers. Furthermore, we augment our dataset using common in-car background noises to simulate real environments, producing a dataset 10 times larger than the collected one. We provide detailed statistics of both the clean and the augmented versions of our dataset. Moreover, we implement two multimodal baselines to demonstrate the validity of CI-AVSR. Experiment results show that leveraging the visual signal improves the overall performance of the model. Although our best model can achieve a considerable quality on the clean test set, the speech recognition quality on the noisy data is still inferior and remains an extremely challenging task for real in-car speech recognition systems. The dataset and code will be released at https://github.com/HLTCHKUST/CI-AVSR.
Code-switching is a speech phenomenon occurring when a speaker switches language during a conversation. Despite the spontaneous nature of code-switching in conversational spoken language, most existing works collect code-switching data from read speech instead of spontaneous speech. ASCEND (A Spontaneous Chinese-English Dataset) is a high-quality Mandarin Chinese-English code-switching corpus built on spontaneous multi-turn conversational dialogue sources collected in Hong Kong. We report ASCEND’s design and procedure for collecting the speech data, including annotations. ASCEND consists of 10.62 hours of clean speech, collected from 23 bilingual speakers of Chinese and English. Furthermore, we conduct baseline experiments using pre-trained wav2vec 2.0 models, achieving a best performance of 22.69% character error rate and 27.05% mixed error rate.
This paper introduces QAConv, a new question answering (QA) dataset that uses conversations as a knowledge source. We focus on informative conversations, including business emails, panel discussions, and work channels. Unlike open-domain and task-oriented dialogues, these conversations are usually long, complex, asynchronous, and involve strong domain knowledge. In total, we collect 34,608 QA pairs from 10,259 selected conversations with both human-written and machine-generated questions. We use a question generator and a dialogue summarizer as auxiliary tools to collect and recommend questions. The dataset has two testing scenarios: chunk mode and full mode, depending on whether the grounded partial conversation is provided or retrieved. Experimental results show that state-of-the-art pretrained QA systems have limited zero-shot performance and tend to predict our questions as unanswerable. Our dataset provides a new training and evaluation testbed to facilitate QA on conversations research.
Resolving dependencies among dialogue history is one of the main obstacles in the research on conversational question answering (QA). The conversational question rewrites (QR) task has been shown to be effective to solve this problem by reformulating questions in a self-contained form. However, QR datasets are limited and existing methods tend to depend on the assumption of the existence of corresponding QR datasets for every CQA dataset. This paper proposes a reinforcement learning approach that integrates QR and CQA tasks without corresponding labeled QR datasets. We train a QR model based on the reward signal obtained from the CQA, and the experimental results show that our approach can bring improvement over the pipeline approaches.
In order to offer a customized script tool and inspire professional scriptwriters, we present VScript. It is a controllable pipeline that generates complete scripts, including dialogues and scene descriptions, as well as presents visually using video retrieval. With an interactive interface, our system allows users to select genres and input starting words that control the theme and development of the generated script. We adopt a hierarchical structure, which first generates the plot, then the script and its visual presentation. A novel approach is also introduced to plot-guided dialogue generation by treating it as an inverse dialogue summarization. The experiment results show that our approach outperforms the baselines on both automatic and human evaluations, especially in genre control.
Long-form question answering (LFQA) aims to generate a paragraph-length answer for a given question. While current work on LFQA using large pre-trained model for generation are effective at producing fluent and somewhat relevant content, one primary challenge lies in how to generate a faithful answer that has less hallucinated content. We propose a new end-to-end framework that jointly models answer generation and machine reading. The key idea is to augment the generation model with fine-grained, answer-related salient information which can be viewed as an emphasis on faithful facts. State-of-the-art results on two LFQA datasets, ELI5 and MS MARCO, demonstrate the effectiveness of our method, in comparison with strong baselines on automatic and human evaluation metrics. A detailed analysis further proves the competency of our methods in generating fluent, relevant, and more faithful answers.
The recent large-scale vision-language pre-training (VLP) of dual-stream architectures (e.g., CLIP) with a tremendous amount of image-text pair data, has shown its superiority on various multimodal alignment tasks. Despite its success, the resulting models are not capable of multimodal generative tasks due to the weak text encoder. To tackle this problem, we propose to augment the dual-stream VLP model with a textual pre-trained language model (PLM) via vision-language knowledge distillation (VLKD), enabling the capability for multimodal generation. VLKD is pretty data- and computation-efficient compared to the pre-training from scratch. Experimental results show that the resulting model has strong zero-shot performance on multimodal generation tasks, such as open-ended visual question answering and image captioning. For example, it achieves 44.5% zero-shot accuracy on the VQAv2 dataset, surpassing the previous state-of-the-art zero-shot model with 7× fewer parameters. Furthermore, the original textual language understanding and generation ability of the PLM is maintained after VLKD, which makes our model versatile for both multimodal and unimodal tasks.
Task-adaptive pre-training (TAPT) alleviates the lack of labelled data and provides performance lift by adapting unlabelled data to downstream task. Unfortunately, existing adaptations mainly involve deterministic rules that cannot generalize well. Here, we propose Clozer, a sequence-tagging based cloze answer extraction method used in TAPT that is extendable for adaptation on any cloze-style machine reading comprehension (MRC) downstream tasks. We experiment on multiple-choice cloze-style MRC tasks, and show that Clozer performs significantly better compared to the oracle and state-of-the-art in escalating TAPT effectiveness in lifting model performance, and prove that Clozer is able to recognize the gold answers independently of any heuristics.
Multilingual language models have shown decent performance in multilingual and cross-lingual natural language understanding tasks. However, the power of these multilingual models in code-switching tasks has not been fully explored. In this paper, we study the effectiveness of multilingual language models to understand their capability and adaptability to the mixed-language setting by considering the inference speed, performance, and number of parameters to measure their practicality. We conduct experiments in three language pairs on named entity recognition and part-of-speech tagging and compare them with existing methods, such as using bilingual embeddings and multilingual meta-embeddings. Our findings suggest that pre-trained multilingual models do not necessarily guarantee high-quality representations on code-switching, while using meta-embeddings achieves similar results with significantly fewer parameters.
Multimodal abstractive summarization (MAS) models that summarize videos (vision modality) and their corresponding transcripts (text modality) are able to extract the essential information from massive multimodal data on the Internet. Recently, large-scale generative pre-trained language models (GPLMs) have been shown to be effective in text generation tasks. However, existing MAS models cannot leverage GPLMs’ powerful generation ability. To fill this research gap, we aim to study two research questions: 1) how to inject visual information into GPLMs without hurting their generation ability; and 2) where is the optimal place in GPLMs to inject the visual information? In this paper, we present a simple yet effective method to construct vision guided (VG) GPLMs for the MAS task using attention-based add-on layers to incorporate visual information while maintaining their original text generation ability. Results show that our best model significantly surpasses the prior state-of-the-art model by 5.7 ROUGE-1, 5.3 ROUGE-2, and 5.1 ROUGE-L scores on the How2 dataset, and our vision guidance method contributes 83.6% of the overall improvement. Furthermore, we conduct thorough ablation studies to analyze the effectiveness of various modality fusion methods and fusion locations.
Continual learning in task-oriented dialogue systems allows the system to add new domains and functionalities overtime after deployment, without incurring the high cost of retraining the whole system each time. In this paper, we propose a first-ever continual learning benchmark for task-oriented dialogue systems with 37 domains to be learned continuously in both modularized and end-to-end learning settings. In addition, we implement and compare multiple existing continual learning baselines, and we propose a simple yet effective architectural method based on residual adapters. We also suggest that the upper bound performance of continual learning should be equivalent to multitask learning when data from all domain is available at once. Our experiments demonstrate that the proposed architectural method and a simple replay-based strategy perform better, by a large margin, compared to other continuous learning techniques, and only slightly worse than the multitask learning upper bound while being 20X faster in learning new domains. We also report several trade-offs in terms of parameter usage, memory size and training time, which are important in the design of a task-oriented dialogue system. The proposed benchmark is released to promote more research in this direction.
Zero-shot transfer learning for dialogue state tracking (DST) enables us to handle a variety of task-oriented dialogue domains without the expense of collecting in-domain data. In this work, we propose to transfer the cross-task knowledge from general question answering (QA) corpora for the zero-shot DST task. Specifically, we propose TransferQA, a transferable generative QA model that seamlessly combines extractive QA and multi-choice QA via a text-to-text transformer framework, and tracks both categorical slots and non-categorical slots in DST. In addition, we introduce two effective ways to construct unanswerable questions, namely, negative question sampling and context truncation, which enable our model to handle none value slots in the zero-shot DST setting. The extensive experiments show that our approaches substantially improve the existing zero-shot and few-shot results on MultiWoz. Moreover, compared to the fully trained baseline on the Schema-Guided Dialogue dataset, our approach shows better generalization ability in unseen domains.
Natural language generation (NLG) benchmarks provide an important avenue to measure progress and develop better NLG systems. Unfortunately, the lack of publicly available NLG benchmarks for low-resource languages poses a challenging barrier for building NLG systems that work well for languages with limited amounts of data. Here we introduce IndoNLG, the first benchmark to measure natural language generation (NLG) progress in three low-resource—yet widely spoken—languages of Indonesia: Indonesian, Javanese, and Sundanese. Altogether, these languages are spoken by more than 100 million native speakers, and hence constitute an important use case of NLG systems today. Concretely, IndoNLG covers six tasks: summarization, question answering, chit-chat, and three different pairs of machine translation (MT) tasks. We collate a clean pretraining corpus of Indonesian, Sundanese, and Javanese datasets, Indo4B-Plus, which is used to pretrain our models: IndoBART and IndoGPT. We show that IndoBART and IndoGPT achieve competitive performance on all tasks—despite using only one-fifth the parameters of a larger multilingual model, mBART-large (Liu et al., 2020). This finding emphasizes the importance of pretraining on closely related, localized languages to achieve more efficient learning and faster inference at very low-resource languages like Javanese and Sundanese.
Information-seeking dialogue systems, including knowledge identification and response generation, aim to respond to users with fluent, coherent, and informative responses based on users’ needs, which. To tackle this challenge, we utilize data augmentation methods and several training techniques with the pre-trained language models to learn a general pattern of the task and thus achieve promising performance. In DialDoc21 competition, our system achieved 74.95 F1 score and 60.74 Exact Match score in subtask 1, and 37.72 SacreBLEU score in subtask 2. Empirical analysis is provided to explain the effectiveness of our approaches.
The scarcity of parallel data is a major obstacle for training high-quality machine translation systems for low-resource languages. Fortunately, some low-resource languages are linguistically related or similar to high-resource languages; these related languages may share many lexical or syntactic structures. In this work, we exploit this linguistic overlap to facilitate translating to and from a low-resource language with only monolingual data, in addition to any parallel data in the related high-resource language. Our method, NMT-Adapt, combines denoising autoencoding, back-translation and adversarial objectives to utilize monolingual data for low-resource adaptation. We experiment on 7 languages from three different language families and show that our technique significantly improves translation into low-resource language compared to other translation baselines.
Few-shot learning has drawn researchers’ attention to overcome the problem of data scarcity. Recently, large pre-trained language models have shown great performance in few-shot learning for various downstream tasks, such as question answering and machine translation. Nevertheless, little exploration has been made to achieve few-shot learning for the fact-checking task. However, fact-checking is an important problem, especially when the amount of information online is growing exponentially every day. In this paper, we propose a new way of utilizing the powerful transfer learning ability of a language model via a perplexity score. The most notable strength of our methodology lies in its capability in few-shot learning. With only two training samples, our methodology can already outperform the Major Class baseline by more than an absolute 10% on the F1-Macro metric across multiple datasets. Through experiments, we empirically verify the plausibility of the rather surprising usage of the perplexity score in the context of fact-checking and highlight the strength of our few-shot methodology by comparing it to strong fine-tuning-based baseline models. Moreover, we construct and publicly release two new fact-checking datasets related to COVID-19.
Existing works in multimodal affective computing tasks, such as emotion recognition and personality recognition, generally adopt a two-phase pipeline by first extracting feature representations for each single modality with hand crafted algorithms, and then performing end-to-end learning with extracted features. However, the extracted features are fixed and cannot be further fine-tuned on different target tasks, and manually finding feature extracting algorithms does not generalize or scale well to different tasks, which can lead to sub-optimal performance. In this paper, we develop a fully end-to-end model that connects the two phases and optimizes them jointly. In addition, we restructure the current datasets to enable the fully end-to-end training. Furthermore, to reduce the computational overhead brought by the end-to-end model, we introduce a sparse cross-modal attention mechanism for the feature extraction. Experimental results show that our fully end-to-end model significantly surpasses the current state-of-the-art models based on the two-phase pipeline. Moreover, by adding the sparse cross-modal attention, our model can maintain the performance with around half less computation in the feature extraction part of the model.
In this paper, we introduce UnifiedM2, a general-purpose misinformation model that jointly models multiple domains of misinformation with a single, unified setup. The model is trained to handle four tasks: detecting news bias, clickbait, fake news, and verifying rumors. By grouping these tasks together, UnifiedM2 learns a richer representation of misinformation, which leads to state-of-the-art or comparable performance across all tasks. Furthermore, we demonstrate that UnifiedM2’s learned representation is helpful for few-shot learning of unseen misinformation tasks/datasets and the model’s generalizability to unseen events.
State-of-the-art abstractive summarization models generally rely on extensive labeled data, which lowers their generalization ability on domains where such data are not available. In this paper, we present a study of domain adaptation for the abstractive summarization task across six diverse target domains in a low-resource setting. Specifically, we investigate the second phase of pre-training on large-scale generative models under three different settings: 1) source domain pre-training; 2) domain-adaptive pre-training; and 3) task-adaptive pre-training. Experiments show that the effectiveness of pre-training is correlated with the similarity between the pre-training data and the target domain task. Moreover, we find that continuing pre-training could lead to the pre-trained model’s catastrophic forgetting, and a learning method with less forgetting can alleviate this issue. Furthermore, results illustrate that a huge gap still exists between the low-resource and high-resource settings, which highlights the need for more advanced domain adaptation methods for the abstractive summarization task.
Personalized dialogue systems are an essential step toward better human-machine interaction. Existing personalized dialogue agents rely on properly designed conversational datasets, which are mostly monolingual (e.g., English), which greatly limits the usage of conversational agents in other languages. In this paper, we propose a multi-lingual extension of Persona-Chat, namely XPersona. Our dataset includes persona conversations in six different languages other than English for evaluating multilingual personalized agents. We experiment with both multilingual and cross-lingual trained baselines and evaluate them against monolingual and translation-pipeline models using both automatic and human evaluation. Experimental results show that the multilingual trained models outperform the translation pipeline and that they are on par with the monolingual models, with the advantage of having a single model across multiple languages. On the other hand, the state-of-the-art cross-lingual trained models achieve inferior performance to the other models, showing that cross-lingual conversation modeling is a challenging task. We hope that our dataset and baselines will accelerate research in multilingual dialogue systems.
Recently, fine-tuning pre-trained language models (e.g., multilingual BERT) to downstream cross-lingual tasks has shown promising results. However, the fine-tuning process inevitably changes the parameters of the pre-trained model and weakens its cross-lingual ability, which leads to sub-optimal performance. To alleviate this problem, we leverage continual learning to preserve the original cross-lingual ability of the pre-trained model when we fine-tune it to downstream tasks. The experimental result shows that our fine-tuning methods can better preserve the cross-lingual ability of the pre-trained model in a sentence retrieval task. Our methods also achieve better performance than other fine-tuning baselines on the zero-shot cross-lingual part-of-speech tagging and named entity recognition tasks.
Task-oriented compositional semantic parsing (TCSP) handles complex nested user queries and serves as an essential component of virtual assistants. Current TCSP models rely on numerous training data to achieve decent performance but fail to generalize to low-resource target languages or domains. In this paper, we present X2Parser, a transferable Cross-lingual and Cross-domain Parser for TCSP. Unlike previous models that learn to generate the hierarchical representations for nested intents and slots, we propose to predict intents and slots separately and cast both prediction tasks into sequence labeling problems. After that, we further propose a fertility-based slot predictor that first learns to detect the number of labels for each token, and then predicts the slot types. Experimental results illustrate that our model can significantly outperform existing strong baselines in cross-lingual and cross-domain settings, and our model can also achieve a good generalization ability on target languages of target domains. Furthermore, we show that our model can reduce the latency by up to 66% compared to the generation-based model.
Over the past year, research in various domains, including Natural Language Processing (NLP), has been accelerated to fight against the COVID-19 pandemic, yet such research has just started on dialogue systems. In this paper, we introduce an end-to-end dialogue system which aims to ease the isolation of people under self-quarantine. We conduct a control simulation experiment to assess the effects of the user interface: a web-based virtual agent, Nora vs. the android ERICA via a video call. The experimental results show that the android can offer a more valuable user experience by giving the impression of being more empathetic and engaging in the conversation due to its nonverbal information, such as facial expressions and body gestures.
Politically sensitive topics are still a challenge for open-domain chatbots. However, dealing with politically sensitive content in a responsible, non-partisan, and safe behavior way is integral for these chatbots. Currently, the main approach to handling political sensitivity is by simply changing such a topic when it is detected. This is safe but evasive and results in a chatbot that is less engaging. In this work, as a first step towards a politically safe chatbot, we propose a group of metrics for assessing their political prudence. We then conduct political prudence analysis of various chatbots and discuss their behavior from multiple angles through our automatic metric and human evaluation metrics. The testsets and codebase are released to promote research in this area.
General-purpose language models have demonstrated impressive capabilities, performing on par with state-of-the-art approaches on a range of downstream natural language processing (NLP) tasks and benchmarks when inferring instructions from very few examples. Here, we evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages without any parameter updates. We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones. Finally, we find the in-context few-shot cross-lingual prediction results of language models are significantly better than random prediction, and they are competitive compared to the existing state-of-the-art cross-lingual models and translation models.
Existing pre-trained large language models have shown unparalleled generative capabilities. However, they are not controllable. In this paper, we propose MEGATRON-CNTRL, a novel framework that uses large-scale language models and adds control to text generation by incorporating an external knowledge base. Our framework consists of a keyword predictor, a knowledge retriever, a contextual knowledge ranker, and a conditional text generator. As we do not have access to ground-truth supervision for the knowledge ranker, we make use of weak supervision from sentence embedding. The empirical results show that our model generates more fluent, consistent, and coherent stories with less repetition and higher diversity compared to prior work on the ROC story dataset. We showcase the controllability of our model by replacing the keywords used to generate stories and re-running the generation process. Human evaluation results show that 77.5% of these stories are successfully controlled by the new keywords. Furthermore, by scaling our model from 124 million to 8.3 billion parameters we demonstrate that larger models improve both the quality of generation (from 74.5% to 93.0% for consistency) and controllability (from 77.5% to 91.5%).
In this paper, we propose Minimalist Transfer Learning (MinTL) to simplify the system design process of task-oriented dialogue systems and alleviate the over-dependency on annotated data. MinTL is a simple yet effective transfer learning framework, which allows us to plug-and-play pre-trained seq2seq models, and jointly learn dialogue state tracking and dialogue response generation. Unlike previous approaches, which use a copy mechanism to “carryover” the old dialogue states to the new one, we introduce Levenshtein belief spans (Lev), that allows efficient dialogue state tracking with a minimal generation length. We instantiate our learning framework with two pre-trained backbones: T5 and BART, and evaluate them on MultiWOZ. Extensive experiments demonstrate that: 1) our systems establish new state-of-the-art results on end-to-end response generation, 2) MinTL-based systems are more robust than baseline methods in the low resource setting, and they achieve competitive results with only 20% training data, and 3) Lev greatly improves the inference efficiency.
Despite the promising results of current cross-lingual models for spoken language understanding systems, they still suffer from imperfect cross-lingual representation alignments between the source and target languages, which makes the performance sub-optimal. To cope with this issue, we propose a regularization approach to further align word-level and sentence-level representations across languages without any external resource. First, we regularize the representation of user utterances based on their corresponding labels. Second, we regularize the latent variable model (Liu et al., 2019) by leveraging adversarial training to disentangle the latent variables. Experiments on the cross-lingual spoken language understanding task show that our model outperforms current state-of-the-art methods in both few-shot and zero-shot scenarios, and our model, trained on a few-shot setting with only 3% of the target language training data, achieves comparable performance to the supervised training with all the training data.
As an essential task in task-oriented dialog systems, slot filling requires extensive training data in a certain domain. However, such data are not always available. Hence, cross-domain slot filling has naturally arisen to cope with this data scarcity problem. In this paper, we propose a Coarse-to-fine approach (Coach) for cross-domain slot filling. Our model first learns the general pattern of slot entities by detecting whether the tokens are slot entities or not. It then predicts the specific types for the slot entities. In addition, we propose a template regularization approach to improve the adaptation robustness by regularizing the representation of utterances based on utterance templates. Experimental results show that our model significantly outperforms state-of-the-art approaches in slot filling. Furthermore, our model can also be applied to the cross-domain named entity recognition task, and it achieves better adaptation performance than other existing baselines. The code is available at https://github.com/zliucr/coach.
An increasing number of people in the world today speak a mixed-language as a result of being multilingual. However, building a speech recognition system for code-switching remains difficult due to the availability of limited resources and the expense and significant effort required to collect mixed-language data. We therefore propose a new learning method, meta-transfer learning, to transfer learn on a code-switched speech recognition system in a low-resource setting by judiciously extracting information from high-resource monolingual datasets. Our model learns to recognize individual languages, and transfer them so as to better recognize mixed-language speech by conditioning the optimization on the code-switching data. Based on experimental results, our model outperforms existing baselines on speech recognition and language modeling tasks, and is faster to converge.
Lay summarization aims to generate lay summaries of scientific papers automatically. It is an essential task that can increase the relevance of science for all of society. In this paper, we build a lay summary generation system based on BART model. We leverage sentence labels as extra supervision signals to improve the performance of lay summarization. In the CL-LaySumm 2020 shared task, our model achieves 46.00 Rouge1-F1 score.
Despite the recent achievements made in the multi-modal emotion recognition task, two problems still exist and have not been well investigated: 1) the relationship between different emotion categories are not utilized, which leads to sub-optimal performance; and 2) current models fail to cope well with low-resource emotions, especially for unseen emotions. In this paper, we propose a modality-transferable model with emotion embeddings to tackle the aforementioned issues. We use pre-trained word embeddings to represent emotion categories for textual data. Then, two mapping functions are learned to transfer these embeddings into visual and acoustic spaces. For each modality, the model calculates the representation distance between the input sequence and target emotions and makes predictions based on the distances. By doing so, our model can directly adapt to the unseen emotions in any modality since we have their pre-trained embeddings and modality mapping functions. Experiments show that our model achieves state-of-the-art performance on most of the emotion categories. Besides, our model also outperforms existing baselines in the zero-shot and few-shot scenarios for unseen emotions.
Although Indonesian is known to be the fourth most frequently used language over the internet, the research progress on this language in natural language processing (NLP) is slow-moving due to a lack of available resources. In response, we introduce the first-ever vast resource for training, evaluation, and benchmarking on Indonesian natural language understanding (IndoNLU) tasks. IndoNLU includes twelve tasks, ranging from single sentence classification to pair-sentences sequence labeling with different levels of complexity. The datasets for the tasks lie in different domains and styles to ensure task diversity. We also provide a set of Indonesian pre-trained models (IndoBERT) trained from a large and clean Indonesian dataset (Indo4B) collected from publicly available sources such as social media texts, blogs, news, and websites. We release baseline models for all twelve tasks, as well as the framework for benchmark evaluation, thus enabling everyone to benchmark their system performances.
We present CAiRE-COVID, a real-time question answering (QA) and multi-document summarization system, which won one of the 10 tasks in the Kaggle COVID-19 Open Research Dataset Challenge, judged by medical experts. Our system aims to tackle the recent challenge of mining the numerous scientific articles being published on COVID-19 by answering high priority questions from the community and summarizing salient question-related information. It combines information extraction with state-of-the-art QA and query-focused multi-document summarization techniques, selecting and highlighting evidence snippets from existing literature given a query. We also propose query-focused abstractive and extractive multi-document summarization methods, to provide more relevant information related to the question. We further conduct quantitative experiments that show consistent improvements on various metrics for each module. We have launched our website CAiRE-COVID for broader use by the medical community, and have open-sourced the code for our system, to bootstrap further study by other researches.
Fine-tuning pre-trained generative language models to down-stream language generation tasks has shown promising results. However, this comes with the cost of having a single, large model for each task, which is not ideal in low-memory/power scenarios (e.g., mobile). In this paper, we propose an effective way to fine-tune multiple down-stream generation tasks simultaneously using a single, large pretrained model. The experiments on five diverse language generation tasks show that by just using an additional 2-3% parameters for each task, our model can maintain or even improve the performance of fine-tuning the whole model.
Task-oriented dialogue systems are either modularized with separate dialogue state tracking (DST) and management steps or end-to-end trainable. In either case, the knowledge base (KB) plays an essential role in fulfilling user requests. Modularized systems rely on DST to interact with the KB, which is expensive in terms of annotation and inference time. End-to-end systems, instead, use the KB directly as input, but they cannot scale when the KB is larger than a few hundred entries. In this paper, we propose a method to embed the KB, of any size, directly into the model parameters. The resulting model does not require any DST or template responses, nor the KB as input, and it can dynamically update its KB via fine-tuning. We evaluate our solution in five task-oriented dialogue datasets with small, medium, and large KB size. Our experiments show that end-to-end models can effectively embed knowledge bases in their parameters and achieve competitive performance in all evaluated datasets.
There has been considerable progress made towards conversational models that generate coherent and fluent responses; however, this often involves training large language models on large dialogue datasets, such as Reddit. These large conversational models provide little control over the generated responses, and this control is further limited in the absence of annotated conversational datasets for attribute specific generation that can be used for fine-tuning the model. In this paper, we first propose and evaluate plug-and-play methods for controllable response generation, which does not require dialogue specific datasets and does not rely on fine-tuning a large model. While effective, the decoding procedure induces considerable computational overhead, rendering the conversational model unsuitable for interactive usage. To overcome this, we introduce an approach that does not require further computation at decoding time, while also does not require any fine-tuning of a large language model. We demonstrate, through extensive automatic and human evaluation, a high degree of control over the generated conversational responses with regard to multiple desired attributes, while being fluent.
Multi-hop Question Generation (QG) aims to generate answer-related questions by aggregating and reasoning over multiple scattered evidence from different paragraphs. It is a more challenging yet under-explored task compared to conventional single-hop QG, where the questions are generated from the sentence containing the answer or nearby sentences in the same paragraph without complex reasoning. To address the additional challenges in multi-hop QG, we propose Multi-Hop Encoding Fusion Network for Question Generation (MulQG), which does context encoding in multiple hops with Graph Convolutional Network and encoding fusion via an Encoder Reasoning Gate. To the best of our knowledge, we are the first to tackle the challenge of multi-hop reasoning over paragraphs without any sentence-level information. Empirical results on HotpotQA dataset demonstrate the effectiveness of our method, in comparison with baselines on automatic evaluation metrics. Moreover, from the human evaluation, our proposed model is able to generate fluent questions with high completeness and outperforms the strongest baseline by 20.8% in the multi-hop evaluation. on. The code is publicly availableat https://github.com/HLTCHKU
Existing models for cross-domain named entity recognition (NER) rely on numerous unlabeled corpus or labeled NER training data in target domains. However, collecting data for low-resource target domains is not only expensive but also time-consuming. Hence, we propose a cross-domain NER model that does not use any external resources. We first introduce a Multi-Task Learning (MTL) by adding a new objective function to detect whether tokens are named entities or not. We then introduce a framework called Mixture of Entity Experts (MoEE) to improve the robustness for zero-resource domain adaptation. Finally, experimental results show that our model outperforms strong unsupervised cross-domain sequence labeling models, and the performance of our model is close to that of the state-of-the-art model which leverages extensive resources.
User attributes provide rich and useful information for user understanding, yet structured and easy-to-use attributes are often sparsely populated. In this paper, we leverage dialogues with conversational agents, which contain strong suggestions of user information, to automatically extract user attributes. Since no existing dataset is available for this purpose, we apply distant supervision to train our proposed two-stage attribute extractor, which surpasses several retrieval and generation baselines on human evaluation. Meanwhile, we discuss potential applications (e.g., personalized recommendation and dialogue systems) of such extracted user attributes, and point out current limitations to cast light on future work.
Nowadays, offensive content in social media has become a serious problem, and automatically detecting offensive language is an essential task. In this paper, we build an offensive language detection system, which combines multi-task learning with BERT-based models. Using a pre-trained language model such as BERT, we can effectively learn the representations for noisy text in social media. Besides, to boost the performance of offensive language detection, we leverage the supervision signals from other related tasks. In the OffensEval-2020 competition, our model achieves 91.51% F1 score in English Sub-task A, which is comparable to the first place (92.23%F1). An empirical analysis is provided to explain the effectiveness of our approaches.
We introduce the Computational Linguistics special issue on Multilingual and Interlingual Semantic Representations for Natural Language Processing. We situate the special issue’s five articles in the context of our fast-changing field, explaining our motivation for this project. We offer a brief summary of the work in the issue, which includes developments on lexical and sentential semantic representations, from symbolic and neural perspectives.
Detecting emotion from dialogue is a challenge that has not yet been extensively surveyed. One could consider the emotion of each dialogue turn to be independent, but in this paper, we introduce a hierarchical approach to classify emotion, hypothesizing that the current emotional state depends on previous latent emotions. We benchmark several feature-based classifiers using pre-trained word and emotion embeddings, state-of-the-art end-to-end neural network models, and Gaussian processes for automatic hyper-parameter search. In our experiments, hierarchical architectures consistently give significant improvements, and our best model achieves a 76.77% F1-score on the test set.
This paper describes our system that has been submitted to SemEval-2019 Task 4: Hyperpartisan News Detection. We focus on removing the noise inherent in the hyperpartisanship dataset from both data-level and model-level by leveraging semi-supervised pseudo-labels and the state-of-the-art BERT model. Our model achieves 75.8% accuracy in the final by-article dataset without ensemble learning.
[Multiple-submission] In the midst of a generation widely exposed to and influenced by media entertainment, the NLP research community has shown relatively little attention on the sexist comments in popular TV series. To understand sexism in TV series, we propose a way of collecting distant supervision dataset using Character Persona information with the psychological theories on sexism. We assume that sexist characters from TV shows are more prone to making sexist comments when talking about women, and show that this hypothesis is valid through experiment. Finally, we conduct an interesting analysis on popular TV show characters and successfully identify different shades of sexism that is often overlooked.
Exploring social bias in chatbot is an important, yet relatively unexplored problem. In this paper, we propose an approach to understand social bias in chatbots by leveraging stereotype knowledge. It allows interesting comparison of bias between chatbots and humans, and provides intuitive analysis of existing chatbots by borrowing the finer-grain concepts of sexism and racism.
In this paper, we propose Multilingual Meta-Embeddings (MME), an effective method to learn multilingual representations by leveraging monolingual pre-trained embeddings. MME learns to utilize information from these embeddings via a self-attention mechanism without explicit language identification. We evaluate the proposed embedding method on the code-switching English-Spanish Named Entity Recognition dataset in a multilingual and cross-lingual setting. The experimental results show that our proposed method achieves state-of-the-art performance on the multilingual setting, and it has the ability to generalize to an unseen language task.
We propose a novel method, Modality-based Redundancy Reduction Fusion (MRRF), for understanding and modulating the relative contribution of each modality in multimodal inference tasks. This is achieved by obtaining an (M+1)-way tensor to consider the high-order relationships between M modalities and the output layer of a neural network model. Applying a modality-based tensor factorization method, which adopts different factors for different modalities, results in removing information present in a modality that can be compensated by other modalities, with respect to model outputs. This helps to understand the relative utility of information in each modality. In addition it leads to a less complicated model with less parameters and therefore could be applied as a regularizer avoiding overfitting. We have applied this method to three different multimodal datasets in sentiment analysis, personality trait recognition, and emotion recognition. We are able to recognize relationships and relative importance of different modalities in these tasks and achieves a 1% to 4% improvement on several evaluation measures compared to the state-of-the-art for all three tasks.
This paper describes CAiRE’s submission to the unsupervised machine translation track of the WMT’19 news shared task from German to Czech. We leverage a phrase-based statistical machine translation (PBSMT) model and a pre-trained language model to combine word-level neural machine translation (NMT) and subword-level NMT models without using any parallel data. We propose to solve the morphological richness problem of languages by training byte-pair encoding (BPE) embeddings for German and Czech separately, and they are aligned using MUSE (Conneau et al., 2018). To ensure the fluency and consistency of translations, a rescoring mechanism is proposed that reuses the pre-trained language model to select the translation candidates generated through beam search. Moreover, a series of pre-processing and post-processing approaches are applied to improve the quality of final translations.
Training code-switched language models is difficult due to lack of data and complexity in the grammatical structure. Linguistic constraint theories have been used for decades to generate artificial code-switching sentences to cope with this issue. However, this require external word alignments or constituency parsers that create erroneous results on distant languages. We propose a sequence-to-sequence model using a copy mechanism to generate code-switching data by leveraging parallel monolingual translations from a limited source of code-switching data. The model learns how to combine words from parallel sentences and identifies when to switch one language to the other. Moreover, it captures code-switching constraints by attending and aligning the words in inputs, without requiring any external knowledge. Based on experimental results, the language model trained with the generated sentences achieves state-of-the-art performance and improves end-to-end automatic speech recognition.
Over-dependence on domain ontology and lack of sharing knowledge across domains are two practical and yet less studied problems of dialogue state tracking. Existing approaches generally fall short when tracking unknown slot values during inference and often have difficulties in adapting to new domains. In this paper, we propose a Transferable Dialogue State Generator (TRADE) that generates dialogue states from utterances using copy mechanism, facilitating transfer when predicting (domain, slot, value) triplets not encountered during training. Our model is composed of an utterance encoder, a slot gate, and a state generator, which are shared across domains. Empirical results demonstrate that TRADE achieves state-of-the-art 48.62% joint goal accuracy for the five domains of MultiWOZ, a human-human dialogue dataset. In addition, we show the transferring ability by simulating zero-shot and few-shot dialogue state tracking for unseen domains. TRADE achieves 60.58% joint goal accuracy in one of the zero-shot domains, and is able to adapt to few-shot cases without forgetting already trained domains.
Existing personalized dialogue models use human designed persona descriptions to improve dialogue consistency. Collecting such descriptions from existing dialogues is expensive and requires hand-crafted feature designs. In this paper, we propose to extend Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) to personalized dialogue learning without using any persona descriptions. Our model learns to quickly adapt to new personas by leveraging only a few dialogue samples collected from the same user, which is fundamentally different from conditioning the response on the persona descriptions. Empirical results on Persona-chat dataset (Zhang et al., 2018) indicate that our solution outperforms non-meta-learning baselines using automatic evaluation metrics, and in terms of human-evaluated fluency and consistency.
Extreme classification is a classification task on an extremely large number of labels (tags). User generated labels for any type of online data can be sparing per individual user but intractably large among all users. It would be useful to automatically select a smaller, standard set of labels to represent the whole label set. We can then solve efficiently the problem of multi-label learning with an intractably large number of interdependent labels, such as automatic tagging of Wikipedia pages. We propose a submodular maximization framework with linear cost to find informative labels which are most relevant to other labels yet least redundant with each other. A simple prediction model can then be trained on this label subset. Our framework includes both label-label and label-feature dependencies, which aims to find the labels with the most representation and prediction ability. In addition, to avoid information loss, we extract and predict outlier labels with weak dependency on other labels. We apply our model to four standard natural language data sets including Bibsonomy entries with users assigned tags, web pages with user assigned tags, legal texts with EUROVOC descriptors(A topic hierarchy with almost 4000 categories regarding different aspects of European law) and Wikipedia pages with tags from social bookmarking as well as news videos for automated label detection from a lexicon of semantic concepts. Experimental results show that our proposed approach improves label prediction quality, in terms of precision and nDCG, by 3% to 5% in three of the 5 tasks and is competitive in the others, even with a simple linear prediction model. An ablation study shows how different data sets benefit from different aspects of our model, with all aspects contributing substantially to at least one data set.
Previous research on empathetic dialogue systems has mostly focused on generating responses given certain emotions. However, being empathetic not only requires the ability of generating emotional responses, but more importantly, requires the understanding of user emotions and replying appropriately. In this paper, we propose a novel end-to-end approach for modeling empathy in dialogue systems: Mixture of Empathetic Listeners (MoEL). Our model first captures the user emotions and outputs an emotion distribution. Based on this, MoEL will softly combine the output states of the appropriate Listener(s), which are each optimized to react to certain emotions, and generate an empathetic response. Human evaluations on EMPATHETIC-DIALOGUES dataset confirm that MoEL outperforms multitask training baseline in terms of empathy, relevance, and fluency. Furthermore, the case study on generated responses of different Listeners shows high interpretability of our model.
Despite the surging demands for multilingual task-oriented dialog systems (e.g., Alexa, Google Home), there has been less research done in multilingual or cross-lingual scenarios. Hence, we propose a zero-shot adaptation of task-oriented dialogue system to low-resource languages. To tackle this challenge, we first use a set of very few parallel word pairs to refine the aligned cross-lingual word-level representations. We then employ a latent variable model to cope with the variance of similar sentences across different languages, which is induced by imperfect cross-lingual alignments and inherent differences in languages. Finally, the experimental results show that even though we utilize much less external resources, our model achieves better adaptation performance for natural language understanding task (i.e., the intent detection and slot filling) compared to the current state-of-the-art model in the zero-shot scenario.
Sensational headlines are headlines that capture people’s attention and generate reader interest. Conventional abstractive headline generation methods, unlike human writers, do not optimize for maximal reader attention. In this paper, we propose a model that generates sensational headlines without labeled data. We first train a sensationalism scorer by classifying online headlines with many comments (“clickbait”) against a baseline of headlines generated from a summarization model. The score from the sensationalism scorer is used as the reward for a reinforcement learner. However, maximizing the noisy sensationalism reward will generate unnatural phrases instead of sensational headlines. To effectively leverage this noisy reward, we propose a novel loss function, Auto-tuned Reinforcement Learning (ARL), to dynamically balance reinforcement learning (RL) with maximum likelihood estimation (MLE). Human evaluation shows that 60.8% of samples generated by our model are sensational, which is significantly better than the Pointer-Gen baseline and other RL models.
In countries that speak multiple main languages, mixing up different languages within a conversation is commonly called code-switching. Previous works addressing this challenge mainly focused on word-level aspects such as word embeddings. However, in many cases, languages share common subwords, especially for closely related languages, but also for languages that are seemingly irrelevant. Therefore, we propose Hierarchical Meta-Embeddings (HME) that learn to combine multiple monolingual word-level and subword-level embeddings to create language-agnostic lexical representations. On the task of Named Entity Recognition for English-Spanish code-switching data, our model achieves the state-of-the-art performance in the multilingual settings. We also show that, in cross-lingual settings, our model not only leverages closely related languages, but also learns from languages with different roots. Finally, we show that combining different subunits are crucial for capturing code-switching entities.
With a large number of datasets being released and new techniques being proposed, Question answering (QA) systems have witnessed great breakthroughs in reading comprehension (RC)tasks. However, most existing methods focus on improving in-domain performance, leaving open the research question of how these mod-els and techniques can generalize to out-of-domain and unseen RC tasks. To enhance the generalization ability, we propose a multi-task learning framework that learns the shared representation across different tasks. Our model is built on top of a large pre-trained language model, such as XLNet, and then fine-tuned on multiple RC datasets. Experimental results show the effectiveness of our methods, with an average Exact Match score of 56.59 and an average F1 score of 68.98, which significantly improves the BERT-Large baseline by8.39 and 7.22, respectively
Lack of text data has been the major issue on code-switching language modeling. In this paper, we introduce multi-task learning based language model which shares syntax representation of languages to leverage linguistic information and tackle the low resource data issue. Our model jointly learns both language modeling and Part-of-Speech tagging on code-switched utterances. In this way, the model is able to identify the location of code-switching points and improves the prediction of next word. Our approach outperforms standard LSTM based language model, with an improvement of 9.7% and 7.4% in perplexity on SEAME Phase I and Phase II dataset respectively.
We propose an LSTM-based model with hierarchical architecture on named entity recognition from code-switching Twitter data. Our model uses bilingual character representation and transfer learning to address out-of-vocabulary words. In order to mitigate data noise, we propose to use token replacement and normalization. In the 3rd Workshop on Computational Approaches to Linguistic Code-Switching Shared Task, we achieved second place with 62.76% harmonic mean F1-score for English-Spanish language pair without using any gazetteer and knowledge-based information.
In this paper, we propose Emo2Vec which encodes emotional semantics into vectors. We train Emo2Vec by multi-task learning six different emotion-related tasks, including emotion/sentiment analysis, sarcasm classification, stress detection, abusive language classification, insult detection, and personality recognition. Our evaluation of Emo2Vec shows that it outperforms existing affect-related representations, such as Sentiment-Specific Word Embedding and DeepMoji embeddings with much smaller training corpora. When concatenated with GloVe, Emo2Vec achieves competitive performances to state-of-the-art results on several tasks using a simple logistic regression classifier.
Fact-checking of textual sources needs to effectively extract relevant information from large knowledge bases. In this paper, we extend an existing pipeline approach to better tackle this problem. We propose a neural ranker using a decomposable attention model that dynamically selects sentences to achieve promising improvement in evidence retrieval F1 by 38.80%, with (x65) speedup compared to a TF-IDF method. Moreover, we incorporate lexical tagging methods into our pipeline framework to simplify the tasks and render the model more generalizable. As a result, our framework achieves promising performance on a large-scale fact extraction and verification dataset with speedup.
Abusive language detection models tend to have a problem of being biased toward identity words of a certain group of people because of imbalanced training datasets. For example, “You are a good woman” was considered “sexist” when trained on an existing dataset. Such model bias is an obstacle for models to be robust enough for practical use. In this work, we measure them on models trained with different datasets, while analyzing the effect of different pre-trained word embeddings and model architectures. We also experiment with three mitigation methods: (1) debiased word embeddings, (2) gender swap data augmentation, and (3) fine-tuning with a larger corpus. These methods can effectively reduce model bias by 90-98% and can be extended to correct model bias in other scenarios.
End-to-end task-oriented dialog systems usually suffer from the challenge of incorporating knowledge bases. In this paper, we propose a novel yet simple end-to-end differentiable model called memory-to-sequence (Mem2Seq) to address this issue. Mem2Seq is the first neural generative model that combines the multi-hop attention over memories with the idea of pointer network. We empirically show how Mem2Seq controls each generation step, and how its multi-hop attention mechanism helps in learning correlations between memories. In addition, our model is quite general without complicated task-specific designs. As a result, we show that Mem2Seq can be trained faster and attain the state-of-the-art performance on three different task-oriented dialog datasets.
We propose a tri-modal architecture to predict Big Five personality trait scores from video clips with different channels for audio, text, and video data. For each channel, stacked Convolutional Neural Networks are employed. The channels are fused both on decision-level and by concatenating their respective fully connected layers. It is shown that a multimodal fusion approach outperforms each single modality channel, with an improvement of 9.4% over the best individual modality (video). Full backpropagation is also shown to be better than a linear combination of modalities, meaning complex interactions between modalities can be leveraged to build better models. Furthermore, we can see the prediction relevance of each modality for each trait. The described model can be used to increase the emotional intelligence of virtual agents.
This paper describes our system that has been submitted to SemEval-2018 Task 1: Affect in Tweets (AIT) to solve five subtasks. We focus on modeling both sentence and word level representations of emotion inside texts through large distantly labeled corpora with emojis and hashtags. We transfer the emotional knowledge by exploiting neural network models as feature extractors and use these representations for traditional machine learning models such as support vector regression (SVR) and logistic regression to solve the competition tasks. Our system is placed among the Top3 for all subtasks we participated.
Automatic abusive language detection is a difficult but important task for online social media. Our research explores a two-step approach of performing classification on abusive language and then classifying into specific types and compares it with one-step approach of doing one multi-class classification for detecting sexist and racist languages. With a public English Twitter corpus of 20 thousand tweets in the type of sexism and racism, our approach shows a promising performance of 0.827 F-measure by using HybridCNN in one-step and 0.824 F-measure by using logistic regression in two-steps.
Zara, or ‘Zara the Supergirl’ is a virtual robot, that can exhibit empathy while interacting with an user, with the aid of its built in facial and emotion recognition, sentiment analysis, and speech module. At the end of the 5-10 minute conversation, Zara can give a personality analysis of the user based on all the user utterances. We have also implemented a real-time emotion recognition, using a CNN model that detects emotion from raw audio without feature extraction, and have achieved an average of 65.7% accuracy on six different emotion classes, which is an impressive 4.5% improvement from the conventional feature based SVM classification. Also, we have described a CNN based sentiment analysis module trained using out-of-domain data, that recognizes sentiment from the speech recognition transcript, which has a 74.8 F-measure when tested on human-machine dialogues.
We propose a comparison between various supervised machine learning methods to predict and detect humor in dialogues. We retrieve our humorous dialogues from a very popular TV sitcom: “The Big Bang Theory”. We build a corpus where punchlines are annotated using the canned laughter embedded in the audio track. Our comparative study involves a linear-chain Conditional Random Field over a Recurrent Neural Network and a Convolutional Neural Network. Using a combination of word-level and audio frame-level features, the CNN outperforms the other methods, obtaining the best F-score of 68.5% over 66.5% by CRF and 52.9% by RNN. Our work is a starting point to developing more effective machine learning and neural network models on the humor prediction task, as well as developing machines capable in understanding humor in general.
In this paper, we present a music retrieval and recommendation system using machine learning techniques. We propose a query by humming system for music retrieval that uses deep neural networks for note transcription and a note-based retrieval system for retrieving the correct song from the database. We evaluate our query by humming system using the standard MIREX QBSH dataset. We also propose a similar artist recommendation system which recommends similar artists based on acoustic features of the artists’ music, online text descriptions of the artists and social media data. We use supervised machine learning techniques over all our features and compare our recommendation results to those produced by a popular similar artist recommendation website.
The fast-spreading development of online streaming services has enabled people from all over the world to listen to music. However, it is not always straightforward for a given user to find the “right” song version he or she is looking for. As streaming services may be affected by the potential dissatisfaction among their customers, the quality of songs and the presence of tags (or labels) associated with songs returned to the users are very important. Thus, the need for precise and reliable metadata becomes paramount. In this work, we are particularly interested in distinguishing between live and studio versions of songs. Specifically, we tackle the problem in the case where very little-annotated training data are available, and demonstrate how an original co-training algorithm in a semi-supervised setting can alleviate the problem of data scarcity to successfully discriminate between live and studio music recordings.
The aim of this paper is to investigate the rules and constraints of code-switching (CS) in Hindi-English mixed language data. In this paper, well discuss how we collected the mixed language corpus. This corpus is primarily made up of student interview speech. The speech was manually transcribed and verified by bilingual speakers of Hindi and English. The code-switching cases in the corpus are discussed and the reasons for code-switching are explained.
In this paper, we describe an ongoing effort in collecting and annotating a multilingual speech database of natural stress emotion from university students. The goal is to detect natural stress emotions and study the stress expression differences in different languages, which may help psychologists in the future. We designed a common questionnaire of stress-inducing and non-stress-inducing questions in English, Mandarin and Cantonese and collected a first ever, multilingual corpus of natural stress emotion. All of the students are native speakers of the corresponding language. We asked native language speakers to annotate recordings according to the participants' self-label states and obtained a very good kappa inter labeler agreement. We carried out human perception tests where listeners who do not understand Chinese were asked to detect stress emotion from the Mandarin Chinese database. Compared to the annotation labels, these human perceived emotions are of low accuracy, which shows a great necessity for natural stress detection research.
Generally the existing monolingual corpora are not suitable for large vocabulary continuous speech recognition (LVCSR) of code-switching speech. The motivation of this paper is to study the rules and constraints code-switching follows and design a corpus for code-switching LVCSR task. This paper presents the development of a Mandarin-English code-switching corpus. This corpus consists of four parts: 1) conversational meeting speech and its data; 2) project meeting speech data; 3) student interviews speech; 4) text data of on-line news. The speech was transcribed by an annotator and verified by Mandarin-English bilingual speakers manually. We propose an approach for automatically downloading from the web text data that contains code-switching. The corpus includes both intra-sentential code-switching (switch in the middle of a sentence) and inter-sentential code-switching (switch at the end of the sentence). The distribution of part-of-speech (POS) tags and code-switching reasons are reported.
In this paper, we present the design, collection, transcription and analysis of a Mandarin Chinese Broadcast Collection of over 3000 hours. The data was collected by Hong Kong University of Science and Technology (HKUST) in China on a cable TV and satellite transmission platform established in support of the DARPA Global Autonomous Language Exploitation (GALE) program. The collection includes broadcast news (BN) and broadcast conversation (BC) including talk shows, roundtable discussions, call-in shows, editorials and other conversational programs that focus on news and current events. HKUST also collects detailed information about all recorded programs. A subset of BC and BN recordings are manually transcribed with standard Chinese characters in UTF-8 encoding, using specific mark-ups for a small set of spontaneous and conversational speech phenomena. The collection is among the largest and first of its kind for Mandarin Chinese Broadcast speech, providing abundant and diverse samples for Mandarin speech recognition and other application-dependent tasks, such as spontaneous speech processing and recognition, topic detection, information retrieval, and speaker recognition. HKUSTâs acoustic analysis of 500 hours of the speech and transcripts demonstrates the positive impact this data could have on system performance.
We present two problems for statistically extracting bilingual lexicon: (1) How can noisy parallel corpora be used? (2) How can non-parallel yet comparable corpora be used? We describe our own work and contribution in relaxing the constraint of using only clean parallel corpora. DKvec is a method for extracting bilingual lexicons, from noisy parallel corpora based on arrival distances of words in noisy parallel corpora. Using DKvec on noisy parallel corpora in English/Japanese and English/Chinese, our evaluations show a 55.35% precision from a small corpus and 89.93% precision from a larger corpus. Our major contribution is in the extraction of bilingual lexicon from non-parallel corpora. We present a first such result in this area, from a new method-Convec. Convec is based on context information of a word to be translated.
We describe a method of using statistically-collected Chinese character groups from a corpus to augment a Chinese dictionary. The method is particularly useful for extracting domain-specific and regional words not readily available in machine-readable dictionaries. Output was evaluated both using human evaluators and against a previously available dictionary. We also evaluated performance improvement in automatic Chinese tokenization. Results show that our method outputs legitimate words, acronymic constructions, idioms, names and titles, as well as technical compounds, many of which were lacking from the original dictionary.