This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Multimodal Argument Mining (MAM) is a recent area of research aiming to extend argument analysis and improve discourse understanding by incorporating multiple modalities. Initial results confirm the importance of paralinguistic cues in this field. However, the research community still lacks a comprehensive platform where results can be easily reproduced, and methods and models can be stored, compared, and tested against a variety of benchmarks. To address these challenges, we propose MAMKit, an open, publicly available, PyTorch toolkit that consolidates datasets and models, providing a standardized platform for experimentation. MAMKit also includes some new baselines, designed to stimulate research on text and audio encoding and fusion for MAM tasks. Our initial results with MAMKit indicate that advancements in MAM require novel annotation processes to encompass auditory cues effectively.
Recent advances in NLP suggest that some tasks, such as argument detection and relation classification, are better framed in a multimodal perspective. We propose multimodal argument mining for argumentative fallacy classification in political debates. To this end, we release the first corpus for multimodal fallacy classification. Our experiments show that the integration of the audio modality leads to superior classification performance. Our findings confirm that framing fallacy classification as a multimodal task is essential to capture paralinguistic aspects of fallacious arguments.
Real-world business applications require a trade-off between language model performance and size. We propose a new method for model compression that relies on vocabulary transfer. We evaluate the method on various vertical domains and downstream tasks. Our results indicate that vocabulary transfer can be effectively used in combination with other compression techniques, yielding a significant reduction in model size and inference time while marginally compromising on performance.
Creating balanced labeled textual corpora for complex tasks, like legal analysis, is a challenging and expensive process that often requires the collaboration of domain experts. To address this problem, we propose a data augmentation method based on the combination of GloVe word embeddings and the WordNet ontology. We present an example of application in the legal domain, specifically on decisions of the Court of Justice of the European Union.Our evaluation with human experts confirms that our method is more robust than the alternatives.
The successful application of argument mining in the legal domain can dramatically impact many disciplines related to law. For this purpose, we present Demosthenes, a novel corpus for argument mining in legal documents, composed of 40 decisions of the Court of Justice of the European Union on matters of fiscal state aid. The annotation specifies three hierarchical levels of information: the argumentative elements, their types, and their argument schemes. In our experimental evaluation, we address 4 different classification tasks, combining advanced language models and traditional classifiers.
We propose a study on multimodal argument mining in the domain of political debates. We collate and extend existing corpora and provide an initial empirical study on multimodal architectures, with a special emphasis on input encoding methods. Our results provide interesting indications about future directions in this important domain.
We present the first annotated corpus for multilingual analysis of potentially unfair clauses in online Terms of Service. The data set comprises a total of 100 contracts, obtained from 25 documents annotated in four different languages: English, German, Italian, and Polish. For each contract, potentially unfair clauses for the consumer are annotated, for nine different unfairness categories. We show how a simple yet efficient annotation projection technique based on sentence embeddings could be used to automatically transfer annotations across languages.
We study annotation projection in text classification problems where source documents are published in multiple languages and may not be an exact translation of one another. In particular, we focus on the detection of unfair clauses in privacy policies and terms of service. We present the first English-German parallel asymmetric corpus for the task at hand. We study and compare several language-agnostic sentence-level projection methods. Our results indicate that a combination of word embeddings and dynamic time warping performs best.
We explore the use of residual networks for argumentation mining, with an emphasis on link prediction. The method we propose makes no assumptions on document or argument structure. We evaluate it on a challenging dataset consisting of user-generated comments collected from an online platform. Results show that our model outperforms an equivalent deep network and offers results comparable with state-of-the-art methods that rely on domain knowledge.