Mohammad Reza Namazi Rad

Also published as: Mohammad-Reza Namazi-Rad


2023

pdf
CITB: A Benchmark for Continual Instruction Tuning
Zihan Zhang | Meng Fang | Ling Chen | Mohammad-Reza Namazi-Rad
Findings of the Association for Computational Linguistics: EMNLP 2023

Continual learning (CL) is a paradigm that aims to replicate the human ability to learn and accumulate knowledge continually without forgetting previous knowledge and transferring it to new tasks. Recent instruction tuning (IT) involves fine-tuning models to make them more adaptable to solving NLP tasks in general. However, it is still uncertain how instruction tuning works in the context of CL tasks. This challenging yet practical problem is formulated as Continual Instruction Tuning (CIT). In this work, we establish a CIT benchmark consisting of learning and evaluation protocols. We curate two long dialogue task streams of different types, InstrDialog and InstrDialog++, to study various CL methods systematically. Our experiments show that existing CL methods do not effectively leverage the rich natural language instructions, and fine-tuning an instruction-tuned model sequentially can yield similar or better results. We further explore different aspects that might affect the learning of CIT. We hope this benchmark will facilitate more research in this direction.

pdf
Turn-Level Active Learning for Dialogue State Tracking
Zihan Zhang | Meng Fang | Fanghua Ye | Ling Chen | Mohammad-Reza Namazi-Rad
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Dialogue state tracking (DST) plays an important role in task-oriented dialogue systems. However, collecting a large amount of turn-by-turn annotated dialogue data is costly and inefficient. In this paper, we propose a novel turn-level active learning framework for DST to actively select turns in dialogues to annotate. Given the limited labelling budget, experimental results demonstrate the effectiveness of selective annotation of dialogue turns. Additionally, our approach can effectively achieve comparable DST performance to traditional training approaches with significantly less annotated data, which provides a more efficient way to annotate new dialogue data.

pdf
How Do Large Language Models Capture the Ever-changing World Knowledge? A Review of Recent Advances
Zihan Zhang | Meng Fang | Ling Chen | Mohammad-Reza Namazi-Rad | Jun Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning deployed LLMs with the ever-changing world knowledge. We categorize research works systemically and provide in-depth comparisons and discussions. We also discuss existing challenges and highlight future directions to facilitate research in this field.

2022

pdf
Is Neural Topic Modelling Better than Clustering? An Empirical Study on Clustering with Contextual Embeddings for Topics
Zihan Zhang | Meng Fang | Ling Chen | Mohammad Reza Namazi Rad
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent work incorporates pre-trained word embeddings such as BERT embeddings into Neural Topic Models (NTMs), generating highly coherent topics. However, with high-quality contextualized document representations, do we really need sophisticated neural models to obtain coherent and interpretable topics? In this paper, we conduct thorough experiments showing that directly clustering high-quality sentence embeddings with an appropriate word selecting method can generate more coherent and diverse topics than NTMs, achieving also higher efficiency and simplicity.