This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large Language Models (LLMs) excel in various Natural Language Processing (NLP) tasks, yet their evaluation, particularly in languages beyond the top 20, remains inadequate due to existing benchmarks and metrics limitations. Employing LLMs as evaluators to rank or score other models’ outputs emerges as a viable solution, addressing the constraints tied to human annotators and established benchmarks. In this study, we explore the potential of LLM-based evaluators in enhancing multilingual evaluation by calibrating them against 20K human judgments across three text-generation tasks, five metrics, and eight languages. Our analysis reveals a bias in LLM-based evaluators towards higher scores, underscoring the necessity of calibration with native speaker judgments, especially in low-resource and non-Latin script languages, to ensure accurate evaluation of LLM performance across diverse languages.
With the rising human-like precision of Large Language Models (LLMs) in numerous tasks, their utilization in a variety of real-world applications is becoming more prevalent. Several studies have shown that LLMs excel on many standard NLP benchmarks. However, it is challenging to evaluate LLMs due to test dataset contamination and the limitations of traditional metrics. Since human evaluations are difficult to collect, there is a growing interest in the community to use LLMs themselves as reference-free evaluators for subjective metrics. However, past work has shown that LLM-based evaluators can exhibit bias and have poor alignment with human judgments. In this study, we propose a framework for an end-to-end assessment of LLMs as evaluators in multilingual scenarios. We create a carefully curated dataset, covering 10 languages containing native speaker judgments for the task of summarization. This dataset is created specifically to evaluate LLM-based evaluators, which we refer to as meta-evaluation (METAL). We compare the performance of LLM-based evaluators created using GPT-3.5-Turbo, GPT-4, and PaLM2. Our results indicate that LLM-based evaluators based on GPT-4 perform the best across languages, while GPT-3.5-Turbo performs poorly. Additionally, we perform an analysis of the reasoning provided by LLM-based evaluators and find that it often does not match the reasoning provided by human judges.
Prompt engineering is a challenging yet crucial task for optimizing the performance of large language models on customized tasks. It requires complex reasoning to examine the model’s errors, hypothesize what is missing or misleading in the current prompt, and communicate the task with clarity. While recent works indicate that large language models can be meta-prompted to perform automatic prompt engineering, we argue that their potential is limited due to insufficient guidance for complex reasoning in the meta-prompt. We fill this gap by infusing into the meta-prompt three key components: detailed descriptions, context specification, and a step-by-step reasoning template. The resulting method, named PE2, showcases remarkable versatility across diverse language tasks. It finds prompts that outperform “let’s think step by step” by 6.3% on MultiArith and 3.1% on GSM8K, and outperforms competitive baselines on counterfactual tasks by 6.9%. Further, we show that PE2 can make targeted prompt edits, rectify erroneous prompts, and induce multi-step plans for complex tasks.
There has been a surge in LLM evaluation research to understand LLM capabilities and limitations. However, much of this research has been confined to English, leaving LLM building and evaluation for non-English languages relatively unexplored. Several new LLMs have been introduced recently, necessitating their evaluation on non-English languages. This study aims to perform a thorough evaluation of the non-English capabilities of SoTA LLMs (GPT-3.5-Turbo, GPT-4, PaLM2, Gemini-Pro, Mistral, Llama2, and Gemma) by comparing them on the same set of multilingual datasets. Our benchmark comprises 22 datasets covering 83 languages, including low-resource African languages. We also include two multimodal datasets in the benchmark and compare the performance of LLaVA models, GPT-4-Vision and Gemini-Pro-Vision. Our experiments show that larger models such as GPT-4, Gemini-Pro and PaLM2 outperform smaller models on various tasks, notably on low-resource languages, with GPT-4 outperforming PaLM2 and Gemini-Pro on more datasets. We also perform a study on data contamination and find that several models are likely to be contaminated with multilingual evaluation benchmarks, necessitating approaches to detect and handle contamination while assessing the multilingual performance of LLMs.
Generative AI models have shown impressive performance on many Natural Language Processing tasks such as language understanding, reasoning, and language generation. An important question being asked by the AI community today is about the capabilities and limits of these models, and it is clear that evaluating generative AI is very challenging. Most studies on generative LLMs have been restricted to English and it is unclear how capable these models are at understanding and generating text in other languages. We present the first comprehensive benchmarking of generative LLMs - MEGA, which evaluates models on standard NLP benchmarks, covering 16 NLP datasets across 70 typologically diverse languages. We compare the performance of generative LLMs including Chat-GPT and GPT-4 to State of the Art (SOTA) non-autoregressive models on these tasks to determine how well generative models perform compared to the previous generation of LLMs. We present a thorough analysis of the performance of models across languages and tasks and discuss challenges in improving the performance of generative LLMs on low-resource languages. We create a framework for evaluating generative LLMs in the multilingual setting and provide directions for future progress in the field.
Recent advances in the pre-training for language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages that are not well represented on the web and therefore excluded from the large-scale crawls for datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pretraining? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a novel African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both additional languages and additional domains is to leverage small quantities of high-quality translation data to fine-tune large pre-trained models.