Matthew Wiesner


2024

pdf
Speech Data from Radio Broadcasts for Low Resource Languages
Bismarck Bamfo Odoom | Leibny Paola Garcia Perera | Prangthip Hansanti | Loic Barrault | Christophe Ropers | Matthew Wiesner | Kenton Murray | Alexandre Mourachko | Philipp Koehn
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

We created a collection of speech data for 48 low resource languages. The corpus is extracted from radio broadcasts and processed with novel speech detection and language identification models based on a manually vetted subset of the audio for 10 languages. The data is made publicly available.

pdf
Where are you from? Geolocating Speech and Applications to Language Identification
Patrick Foley | Matthew Wiesner | Bismarck Odoom | Leibny Paola Garcia Perera | Kenton Murray | Philipp Koehn
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We train models to answer the question, Where are you from? and show how such models can be repurposed for language identification (LID). To our knowledge, this paper is the first to introduce data sources, methods and models to tackle the task of geolocation of speech at a global scale, and the first to explore using geolocation as a proxy-task for LID. Specifically, we explore whether radio broadcasts with known origin can be used to train regression and classification-based models for geolocating speech. We build models on top of self-supervised pretrained models, using attention pooling to qualitatively verify that the model geolocates the speech itself, and not other channel artifacts.The best geolocation models localize speaker origin to around 650km. We confirm the value of speech geolocation as a proxy task by using speech geolocation models for zero-shot LID. Finally, we show that fine-tuning geolocation models for LID outperforms fine-tuning pretrained Wav2Vec2.0 models, and achieves state-of-the-art performance on the FLEURS benchmark.

2023

pdf
JHU IWSLT 2023 Dialect Speech Translation System Description
Amir Hussein | Cihan Xiao | Neha Verma | Thomas Thebaud | Matthew Wiesner | Sanjeev Khudanpur
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

This paper presents JHU’s submissions to the IWSLT 2023 dialectal and low-resource track of Tunisian Arabic to English speech translation. The Tunisian dialect lacks formal orthography and abundant training data, making it challenging to develop effective speech translation (ST) systems. To address these challenges, we explore the integration of large pre-trained machine translation (MT) models, such as mBART and NLLB-200 in both end-to-end (E2E) and cascaded speech translation (ST) systems. We also improve the performance of automatic speech recognition (ASR) through the use of pseudo-labeling data augmentation and channel matching on telephone data. Finally, we combine our E2E and cascaded ST systems with Minimum Bayes-Risk decoding. Our combined system achieves a BLEU score of 21.6 and 19.1 on test2 and test3, respectively.

pdf
JHU IWSLT 2023 Multilingual Speech Translation System Description
Henry Li Xinyuan | Neha Verma | Bismarck Bamfo Odoom | Ujvala Pradeep | Matthew Wiesner | Sanjeev Khudanpur
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

We describe the Johns Hopkins ACL 60-60 Speech Translation systems submitted to the IWSLT 2023 Multilingual track, where we were tasked to translate ACL presentations from English into 10 languages. We developed cascaded speech translation systems for both the constrained and unconstrained subtracks. Our systems make use of pre-trained models as well as domain-specific corpora for this highly technical evaluation-only task. We find that the specific technical domain which ACL presentations fall into presents a unique challenge for both ASR and MT, and we present an error analysis and an ACL-specific corpus we produced to enable further work in this area.

2022

pdf
JHU IWSLT 2022 Dialect Speech Translation System Description
Jinyi Yang | Amir Hussein | Matthew Wiesner | Sanjeev Khudanpur
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

This paper details the Johns Hopkins speech translation (ST) system used in the IWLST2022 dialect speech translation task. Our system uses a cascade of automatic speech recognition (ASR) and machine translation (MT). We use a Conformer model for ASR systems and a Transformer model for machine translation. Surprisingly, we found that while using additional ASR training data resulted in only a negligible change in performance as measured by BLEU or word error rate (WER), aggressive text normalization improved BLEU more significantly. We also describe an approach, similar to back-translation, for improving performance using synthetic dialectal source text produced from source sentences in mismatched dialects.

2021

pdf
End-to-end ASR to jointly predict transcriptions and linguistic annotations
Motoi Omachi | Yuya Fujita | Shinji Watanabe | Matthew Wiesner
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose a Transformer-based sequence-to-sequence model for automatic speech recognition (ASR) capable of simultaneously transcribing and annotating audio with linguistic information such as phonemic transcripts or part-of-speech (POS) tags. Since linguistic information is important in natural language processing (NLP), the proposed ASR is especially useful for speech interface applications, including spoken dialogue systems and speech translation, which combine ASR and NLP. To produce linguistic annotations, we train the ASR system using modified training targets: each grapheme or multi-grapheme unit in the target transcript is followed by an aligned phoneme sequence and/or POS tag. Since our method has access to the underlying audio data, we can estimate linguistic annotations more accurately than pipeline approaches in which NLP-based methods are applied to a hypothesized ASR transcript. Experimental results on Japanese and English datasets show that the proposed ASR system is capable of simultaneously producing high-quality transcriptions and linguistic annotations.

pdf bib
FINDINGS OF THE IWSLT 2021 EVALUATION CAMPAIGN
Antonios Anastasopoulos | Ondřej Bojar | Jacob Bremerman | Roldano Cattoni | Maha Elbayad | Marcello Federico | Xutai Ma | Satoshi Nakamura | Matteo Negri | Jan Niehues | Juan Pino | Elizabeth Salesky | Sebastian Stüker | Katsuhito Sudoh | Marco Turchi | Alexander Waibel | Changhan Wang | Matthew Wiesner
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)

The evaluation campaign of the International Conference on Spoken Language Translation (IWSLT 2021) featured this year four shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Multilingual speech translation, (iv) Low-resource speech translation. A total of 22 teams participated in at least one of the tasks. This paper describes each shared task, data and evaluation metrics, and reports results of the received submissions.

2020

pdf
A Corpus for Large-Scale Phonetic Typology
Elizabeth Salesky | Eleanor Chodroff | Tiago Pimentel | Matthew Wiesner | Ryan Cotterell | Alan W Black | Jason Eisner
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

A major hurdle in data-driven research on typology is having sufficient data in many languages to draw meaningful conclusions. We present VoxClamantis v1.0, the first large-scale corpus for phonetic typology, with aligned segments and estimated phoneme-level labels in 690 readings spanning 635 languages, along with acoustic-phonetic measures of vowels and sibilants. Access to such data can greatly facilitate investigation of phonetic typology at a large scale and across many languages. However, it is non-trivial and computationally intensive to obtain such alignments for hundreds of languages, many of which have few to no resources presently available. We describe the methodology to create our corpus, discuss caveats with current methods and their impact on the utility of this data, and illustrate possible research directions through a series of case studies on the 48 highest-quality readings. Our corpus and scripts are publicly available for non-commercial use at https://voxclamantisproject.github.io.

pdf
Induced Inflection-Set Keyword Search in Speech
Oliver Adams | Matthew Wiesner | Jan Trmal | Garrett Nicolai | David Yarowsky
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

We investigate the problem of searching for a lexeme-set in speech by searching for its inflectional variants. Experimental results indicate how lexeme-set search performance changes with the number of hypothesized inflections, while ablation experiments highlight the relative importance of different components in the lexeme-set search pipeline and the value of using curated inflectional paradigms. We provide a recipe and evaluation set for the community to use as an extrinsic measure of the performance of inflection generation approaches.

2019

pdf
Massively Multilingual Adversarial Speech Recognition
Oliver Adams | Matthew Wiesner | Shinji Watanabe | David Yarowsky
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We report on adaptation of multilingual end-to-end speech recognition models trained on as many as 100 languages. Our findings shed light on the relative importance of similarity between the target and pretraining languages along the dimensions of phonetics, phonology, language family, geographical location, and orthography. In this context, experiments demonstrate the effectiveness of two additional pretraining objectives in encouraging language-independent encoder representations: a context-independent phoneme objective paired with a language-adversarial classification objective.