This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
For different reasons, text can be difficult to read and understand for many people, especially if the text’s language is too complex. In order to provide suitable text for the target audience, it is necessary to measure its complexity. In this paper we describe subjective experiments to assess the readability of German text. We compile a new corpus of sentences provided by a German IT service provider. The sentences are annotated with the subjective complexity ratings by two groups of participants, namely experts and non-experts for that text domain. We then extract an extensive set of linguistically motivated features that are supposedly interacting with complexity perception. We show that a linear regression model with a subset of these features can be a very good predictor of text complexity.
In recent years, machine learning for clinical decision support has gained more and more attention. In order to introduce such applications into clinical practice, a good performance might be essential, however, the aspect of trust should not be underestimated. For the treating physician using such a system and being (legally) responsible for the decision made, it is particularly important to understand the system’s recommendation. To provide insights into a model’s decision, various techniques from the field of explainability (XAI) have been proposed whose output is often enough not targeted to the domain experts that want to use the model. To close this gap, in this work, we explore how explanations could possibly look like in future. To this end, this work presents a dataset of textual explanations in context of decision support. Within a reader study, human physicians estimated the likelihood of possible negative patient outcomes in the near future and justified each decision with a few sentences. Using those sentences, we created a novel corpus, annotated with different semantic layers. Moreover, we provide an analysis of how those explanations are constructed, and how they change depending on physician, on the estimated risk and also in comparison to an automatic clinical decision support system with feature importance.
Many people share information in social media or forums, like food they eat, sports activities they do or events which have been visited. Information we share online unveil directly or indirectly information about our lifestyle and health situation. Particularly when text input is getting longer or multiple messages can be linked to each other. Those information can be then used to detect possible risk factors of diseases or adverse drug reactions of medications. However, as most people are not medical experts, language used might be more descriptive rather than the precise medical expression as medics do. To detect and use those relevant information, laymen language has to be translated and/or linked against the corresponding medical concept. This work presents baseline data sources in order to address this challenge for German language. We introduce a new dataset which annotates medical laymen and technical expressions in a patient forum, along with a set of medical synonyms and definitions, and present first baseline results on the data.
Recent development of large-scale question answering (QA) datasets triggered a substantial amount of research into end-to-end neural architectures for QA. Increasingly complex systems have been conceived without comparison to simpler neural baseline systems that would justify their complexity. In this work, we propose a simple heuristic that guides the development of neural baseline systems for the extractive QA task. We find that there are two ingredients necessary for building a high-performing neural QA system: first, the awareness of question words while processing the context and second, a composition function that goes beyond simple bag-of-words modeling, such as recurrent neural networks. Our results show that FastQA, a system that meets these two requirements, can achieve very competitive performance compared with existing models. We argue that this surprising finding puts results of previous systems and the complexity of recent QA datasets into perspective.
In this work we present a fine-grained annotation schema to detect named entities in German clinical data of chronically ill patients with kidney diseases. The annotation schema is driven by the needs of our clinical partners and the linguistic aspects of German language. In order to generate annotations within a short period, the work also presents a semi-automatic annotation which uses additional sources of knowledge such as UMLS, to pre-annotate concepts in advance. The presented schema will be used to apply novel techniques from natural language processing and machine learning to support doctors treating their patients by improved information access from unstructured German texts.