This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
This paper introduces the Webis Gmane Email Corpus 2019, the largest publicly available and fully preprocessed email corpus to date. We crawled more than 153 million emails from 14,699 mailing lists and segmented them into semantically consistent components using a new neural segmentation model. With 96% accuracy on 15 classes of email segments, our model achieves state-of-the-art performance while being more efficient to train than previous ones. All data, code, and trained models are made freely available alongside the paper.
Authorship verification is the task of determining whether two texts were written by the same author. We deal with the adversary task, called authorship obfuscation: preventing verification by altering a to-be-obfuscated text. Our new obfuscation approach (1) models writing style difference as the Jensen-Shannon distance between the character n-gram distributions of texts, and (2) manipulates an author’s subconsciously encoded writing style in a sophisticated manner using heuristic search. To obfuscate, we analyze the huge space of textual variants for a paraphrased version of the to-be-obfuscated text that has a sufficient Jensen-Shannon distance at minimal costs in terms of text quality. We analyze, quantify, and illustrate the rationale of this approach, define paraphrasing operators, derive obfuscation thresholds, and develop an effective obfuscation framework. Our authorship obfuscation approach defeats state-of-the-art verification approaches, including unmasking and compression models, while keeping text changes at a minimum.
The PAN series of shared tasks is well known for its continuous and high quality research in the field of digital text forensics. Among others, PAN contributions include original corpora, tailored benchmarks, and standardized experimentation platforms. In this paper we review, theoretically and practically, the authorship verification task and conclude that the underlying experiment design cannot guarantee pushing forward the state of the art—in fact, it allows for top benchmarking with a surprisingly straightforward approach. In this regard, we present a “Basic and Fairly Flawed” (BAFF) authorship verifier that is on a par with the best approaches submitted so far, and that illustrates sources of bias that should be eliminated. We pinpoint these sources in the evaluation chain and present a refined authorship corpus as effective countermeasure.
Authorship verification is the problem of inferring whether two texts were written by the same author. For this task, unmasking is one of the most robust approaches as of today with the major shortcoming of only being applicable to book-length texts. In this paper, we present a generalized unmasking approach which allows for authorship verification of texts as short as four printed pages with very high precision at an adjustable recall tradeoff. Our generalized approach therefore reduces the required material by orders of magnitude, making unmasking applicable to authorship cases of more practical proportions. The new approach is on par with other state-of-the-art techniques that are optimized for texts of this length: it achieves accuracies of 75–80%, while also allowing for easy adjustment to forensic scenarios that require higher levels of confidence in the classification.
We report on a comparative style analysis of hyperpartisan (extremely one-sided) news and fake news. A corpus of 1,627 articles from 9 political publishers, three each from the mainstream, the hyperpartisan left, and the hyperpartisan right, have been fact-checked by professional journalists at BuzzFeed: 97% of the 299 fake news articles identified are also hyperpartisan. We show how a style analysis can distinguish hyperpartisan news from the mainstream (F1 = 0.78), and satire from both (F1 = 0.81). But stylometry is no silver bullet as style-based fake news detection does not work (F1 = 0.46). We further reveal that left-wing and right-wing news share significantly more stylistic similarities than either does with the mainstream. This result is robust: it has been confirmed by three different modeling approaches, one of which employs Unmasking in a novel way. Applications of our results include partisanship detection and pre-screening for semi-automatic fake news detection.
Computational argumentation is expected to play a critical role in the future of web search. To make this happen, many search-related questions must be revisited, such as how people query for arguments, how to mine arguments from the web, or how to rank them. In this paper, we develop an argument search framework for studying these and further questions. The framework allows for the composition of approaches to acquiring, mining, assessing, indexing, querying, retrieving, ranking, and presenting arguments while relying on standard infrastructure and interfaces. Based on the framework, we build a prototype search engine, called args, that relies on an initial, freely accessible index of nearly 300k arguments crawled from reliable web resources. The framework and the argument search engine are intended as an environment for collaborative research on computational argumentation and its practical evaluation.