Issei Yoshida


2023

pdf
Sentence Identification with BOS and EOS Label Combinations
Takuma Udagawa | Hiroshi Kanayama | Issei Yoshida
Findings of the Association for Computational Linguistics: EACL 2023

The sentence is a fundamental unit in many NLP applications. Sentence segmentation is widely used as the first preprocessing task, where an input text is split into consecutive sentences considering the end of the sentence (EOS) as their boundaries. This task formulation relies on a strong assumption that the input text consists only of sentences, or what we call the sentential units (SUs). However, real-world texts often contain non-sentential units (NSUs) such as metadata, sentence fragments, nonlinguistic markers, etc. which are unreasonable or undesirable to be treated as a part of an SU. To tackle this issue, we formulate a novel task of sentence identification, where the goal is to identify SUs while excluding NSUs in a given text. To conduct sentence identification, we propose a simple yet effective method which combines the beginning of the sentence (BOS) and EOS labels to determine the most probable SUs and NSUs based on dynamic programming. To evaluate this task, we design an automatic, language-independent procedure to convert the Universal Dependencies corpora into sentence identification benchmarks. Finally, our experiments on the sentence identification task demonstrate that our proposed method generally outperforms sentence segmentation baselines which only utilize EOS labels.

pdf
Incorporating Syntactic Knowledge into Pre-trained Language Model using Optimization for Overcoming Catastrophic Forgetting
Ran Iwamoto | Issei Yoshida | Hiroshi Kanayama | Takuya Ohko | Masayasu Muraoka
Findings of the Association for Computational Linguistics: EMNLP 2023

Syntactic knowledge is invaluable information for many tasks which handle complex or long sentences, but typical pre-trained language models do not contain sufficient syntactic knowledge. Thus it results in failures in downstream tasks that require syntactic knowledge. In this paper, we explore additional training to incorporate syntactic knowledge to a language model. We designed four pre-training tasks that learn different syntactic perspectives. For adding new syntactic knowledge and keeping a good balance between the original and additional knowledge, we addressed the problem of catastrophic forgetting that prevents the model from keeping semantic information when the model learns additional syntactic knowledge. We demonstrated that additional syntactic training produced consistent performance gains while clearly avoiding catastrophic forgetting.

2022

pdf
A Simple Yet Effective Corpus Construction Method for Chinese Sentence Compression
Yang Zhao | Hiroshi Kanayama | Issei Yoshida | Masayasu Muraoka | Akiko Aizawa
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Deletion-based sentence compression in the English language has made significant progress over the past few decades. However, there is a lack of large-scale and high-quality parallel corpus (i.e., (sentence, compression) pairs) for the Chinese language to train an efficient compression system. To remedy this shortcoming, we present a dependency-tree-based method to construct a Chinese corpus with 151k pairs of sentences and compression based on Chinese language-specific characteristics. Subsequently, we trained both extractive and generative neural compression models using the constructed corpus. The experimental results show that our compression model can generate high-quality compressed sentences on both automatic and human evaluation metrics compared with the baselines. The results of the faithfulness evaluation also indicated that the Chinese compression model trained on our constructed corpus can produce more faithful compressed sentences. Furthermore, a dataset with 1,000 pairs of sentences and ground truth compression was manually created for automatic evaluation, which, we believe, will benefit future research on Chinese sentence compression.

pdf
A Simple Yet Effective Hybrid Pre-trained Language Model for Unsupervised Sentence Acceptability Prediction
Yang Zhao | Issei Yoshida
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Sentence acceptability judgment assesses to what degree a sentence is acceptable to native speakers of the language. Most unsupervised prediction approaches rely on a language model to obtain the likelihood of a sentence that reflects acceptability. However, two problems exist: first, low-frequency words would have a significant negative impact on the sentence likelihood derived from the language model; second, when it comes to multiple domains, the language model needs to be trained on domain-specific text for domain adaptation. To address both problems, we propose a simple method that substitutes Part-of-Speech (POS) tags for low-frequency words in sentences used for continual training of masked language models. Experimental results show that our word-tag-hybrid BERT model brings improvement on both a sentence acceptability benchmark and a cross-domain sentence acceptability evaluation corpus. Furthermore, our annotated cross-domain sentence acceptability evaluation corpus would benefit future research.

2020

pdf
Interactive Construction of User-Centric Dictionary for Text Analytics
Ryosuke Kohita | Issei Yoshida | Hiroshi Kanayama | Tetsuya Nasukawa
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We propose a methodology to construct a term dictionary for text analytics through an interactive process between a human and a machine, which helps the creation of flexible dictionaries with precise granularity required in typical text analysis. This paper introduces the first formulation of interactive dictionary construction to address this issue. To optimize the interaction, we propose a new algorithm that effectively captures an analyst’s intention starting from only a small number of sample terms. Along with the algorithm, we also design an automatic evaluation framework that provides a systematic assessment of any interactive method for the dictionary creation task. Experiments using real scenario based corpora and dictionaries show that our algorithm outperforms baseline methods, and works even with a small number of interactions.