Hassan Shahmohammadi
2023
ViPE: Visualise Pretty-much Everything
Hassan Shahmohammadi
|
Adhiraj Ghosh
|
Hendrik Lensch
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Figurative and non-literal expressions are profoundly integrated in human communication. Visualising such expressions allow us to convey our creative thoughts, and evoke nuanced emotions. Recent text-to-image models like Stable Diffusion, on the other hand, struggle to depict non-literal expressions. Recent works primarily deal with this issue by compiling humanly annotated datasets on a small scale, which not only demands specialized expertise but also proves highly inefficient. To address this issue, we introduce ViPE: Visualise Pretty-much Everything. ViPE offers a series of lightweight and robust language models that have been trained on a large-scale set of lyrics with noisy visual descriptions that represent their implicit meaning. The synthetic visual descriptions are generated by GPT3.5 relying on neither human annotations nor images. ViPE effectively expresses any arbitrary piece of text into a visualisable description, enabling meaningful and high-quality image generation. We provide compelling evidence that ViPE is more robust than GPT3.5 in synthesising visual elaborations. ViPE also exhibits an understanding of figurative expressions comparable to human experts, providing a powerful and open-source backbone to many downstream applications such as music video and caption generation.
2022
Visual Grounding of Inter-lingual Word-Embeddings
Wafaa Mohammed
|
Hassan Shahmohammadi
|
Hendrik P. A. Lensch
|
R. Harald Baayen
Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)
Visual grounding of Language aims at enriching textual representations of language with multiple sources of visual knowledge such as images and videos. Although visual grounding is an area of intense research, inter-lingual aspects of visual grounding have not received much attention. The present study investigates the inter-lingual visual grounding of word embeddings. We propose an implicit alignment technique between the two spaces of vision and language in which inter-lingual textual information interacts in order to enrich pre-trained textual word embeddings. We focus on three languages in our experiments, namely, English, Arabic, and German. We obtained visually grounded vector representations for these languages and studied whether visual grounding on one or multiple languages improved the performance of embeddings on word similarity and categorization benchmarks. Our experiments suggest that inter-lingual knowledge improves the performance of grounded embeddings in similar languages such as German and English. However, inter-lingual grounding of German or English with Arabic led to a slight degradation in performance on word similarity benchmarks. On the other hand, we observed an opposite trend on categorization benchmarks where Arabic had the most improvement on English. In the discussion section, several reasons for those findings are laid out. We hope that our experiments provide a baseline for further research on inter lingual visual grounding.
2021
Learning Zero-Shot Multifaceted Visually Grounded Word Embeddings via Multi-Task Training
Hassan Shahmohammadi
|
Hendrik P. A. Lensch
|
R. Harald Baayen
Proceedings of the 25th Conference on Computational Natural Language Learning
Language grounding aims at linking the symbolic representation of language (e.g., words) into the rich perceptual knowledge of the outside world. The general approach is to embed both textual and visual information into a common space -the grounded space- confined by an explicit relationship. We argue that since concrete and abstract words are processed differently in the brain, such approaches sacrifice the abstract knowledge obtained from textual statistics in the process of acquiring perceptual information. The focus of this paper is to solve this issue by implicitly grounding the word embeddings. Rather than learning two mappings into a joint space, our approach integrates modalities by implicit alignment. This is achieved by learning a reversible mapping between the textual and the grounded space by means of multi-task training. Intrinsic and extrinsic evaluations show that our way of visual grounding is highly beneficial for both abstract and concrete words. Our embeddings are correlated with human judgments and outperform previous works using pretrained word embeddings on a wide range of benchmarks. Our grounded embeddings are publicly available here.
Search