Evan Kidd


2020

pdf
Evaluating Word Embeddings for Language Acquisition
Raquel G. Alhama | Caroline Rowland | Evan Kidd
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics

Continuous vector word representations (or word embeddings) have shown success in capturing semantic relations between words, as evidenced with evaluation against behavioral data of adult performance on semantic tasks (Pereira et al. 2016). Adult semantic knowledge is the endpoint of a language acquisition process; thus, a relevant question is whether these models can also capture emerging word representations of young language learners. However, the data of semantic knowledge of children is scarce or non-existent for some age groups. In this paper, we propose to bridge this gap by using Age of Acquisition norms to evaluate word embeddings learnt from child-directed input. We present two methods that evaluate word embeddings in terms of (a) the semantic neighbourhood density of learnt words, and (b) the convergence to adult word associations. We apply our methods to bag-of-words models, and we find that (1) children acquire words with fewer semantic neighbours earlier, and (2) young learners only attend to very local context. These findings provide converging evidence for validity of our methods in understanding the prerequisite features for a distributional model of word learning.