Euijai Ahn


2023

pdf
Revisiting Intermediate Layer Distillation for Compressing Language Models: An Overfitting Perspective
Jongwoo Ko | Seungjoon Park | Minchan Jeong | Sukjin Hong | Euijai Ahn | Du-Seong Chang | Se-Young Yun
Findings of the Association for Computational Linguistics: EACL 2023

Knowledge distillation (KD) is a highly promising method for mitigating the computational problems of pre-trained language models (PLMs). Among various KD approaches, Intermediate Layer Distillation (ILD) has been a de facto standard KD method with its performance efficacy in the NLP field. In this paper, we find that existing ILD methods are prone to overfitting to training datasets, although these methods transfer more information than the original KD. Next, we present the simple observations to mitigate the overfitting of ILD: distilling only the last Transformer layer and conducting ILD on supplementary tasks. Based on our two findings, we propose a simple yet effective consistency-regularized ILD (CR-ILD), which prevents the student model from overfitting the training dataset. Substantial experiments on distilling BERT on the GLUE benchmark and several synthetic datasets demonstrate that our proposed ILD method outperforms other KD techniques. Our code is available at https://github.com/jongwooko/CR-ILD.

pdf
NASH: A Simple Unified Framework of Structured Pruning for Accelerating Encoder-Decoder Language Models
Jongwoo Ko | Seungjoon Park | Yujin Kim | Sumyeong Ahn | Du-Seong Chang | Euijai Ahn | Se-Young Yun
Findings of the Association for Computational Linguistics: EMNLP 2023

Structured pruning methods have proven effective in reducing the model size and accelerating inference speed in various network architectures such as Transformers. Despite the versatility of encoder-decoder models in numerous NLP tasks, the structured pruning methods on such models are relatively less explored compared to encoder-only models. In this study, we investigate the behavior of the structured pruning of the encoder-decoder models in the decoupled pruning perspective of the encoder and decoder component, respectively. Our findings highlight two insights: (1) the number of decoder layers is the dominant factor of inference speed, and (2) low sparsity in the pruned encoder network enhances generation quality. Motivated by these findings, we propose a simple and effective framework, NASH, that narrows the encoder and shortens the decoder networks of encoder-decoder models. Extensive experiments on diverse generation and inference tasks validate the effectiveness of our method in both speedup and output quality.