2024
pdf
abs
Translation Deserves Better: Analyzing Translation Artifacts in Cross-lingual Visual Question Answering
ChaeHun Park
|
Koanho Lee
|
Hyesu Lim
|
Jaeseok Kim
|
Junmo Park
|
Yu-Jung Heo
|
Du-Seong Chang
|
Jaegul Choo
Findings of the Association for Computational Linguistics ACL 2024
Building a reliable visual question answering (VQA) system across different languages is a challenging problem, primarily due to the lack of abundant samples for training. To address this challenge, recent studies have employed machine translation systems for the cross-lingual VQA task. This involves translating the evaluation samples into a source language (usually English) and using monolingual models (i.e., translate-test). However, our analysis reveals that translated texts contain unique characteristics distinct from human-written ones, referred to as translation artifacts. We find that these artifacts can significantly affect the models, confirmed by extensive experiments across diverse models, languages, and translation processes. In light of this, we present a simple data augmentation strategy that can alleviate the adverse impacts of translation artifacts.
pdf
abs
PSYDIAL: Personality-based Synthetic Dialogue Generation Using Large Language Models
Ji-Eun Han
|
Jun-Seok Koh
|
Hyeon-Tae Seo
|
Du-Seong Chang
|
Kyung-Ah Sohn
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
We present a novel end-to-end personality-based synthetic dialogue data generation pipeline, specifically designed to elicit responses from large language models via prompting. We design the prompts to generate more human-like dialogues considering real-world scenarios when users engage with chatbots. We introduce PSYDIAL, the first Korean dialogue dataset focused on personality-based dialogues, curated using our proposed pipeline. Notably, we focus on the Extraversion dimension of the Big Five personality model in our research. Experimental results indicate that while pre-trained models and those fine-tuned with a chit-chat dataset struggle to generate responses reflecting personality, models trained with PSYDIAL show significant improvements. The versatility of our pipeline extends beyond dialogue tasks, offering potential for other non-dialogue related applications. This research opens doors for more nuanced, personality-driven conversational AI in Korean and potentially other languages.
pdf
abs
Improving Conversational Abilities of Quantized Large Language Models via Direct Preference Alignment
Janghwan Lee
|
Seongmin Park
|
Sukjin Hong
|
Minsoo Kim
|
Du-Seong Chang
|
Jungwook Choi
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The rapid advancement of large language models (LLMs) has facilitated their transformation into conversational chatbots that can grasp contextual nuances and generate pertinent sentences, closely mirroring human values through advanced techniques such as instruction tuning and reinforcement learning from human feedback (RLHF). However, the computational efficiency required for LLMs, achieved through techniques like post-training quantization (PTQ), presents challenges such as token-flipping that can impair chatbot performance. In response, we propose a novel preference alignment approach, quantization-aware direct preference optimization (QDPO), that aligns quantized LLMs with their full-precision counterparts, improving conversational abilities. Evaluated on two instruction-tuned LLMs in various languages, QDPO demonstrated superior performance in improving conversational abilities compared to established PTQ and knowledge-distillation fine-tuning techniques, marking a significant step forward in the development of efficient and effective conversational LLMs.
pdf
abs
Guidance-Based Prompt Data Augmentation in Specialized Domains for Named Entity Recognition
Hyeonseok Kang
|
Hyein Seo
|
Jeesu Jung
|
Sangkeun Jung
|
Du-Seong Chang
|
Riwoo Chung
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
While the abundance of rich and vast datasets across numerous fields has facilitated the advancement of natural language processing, sectors in need of specialized data types continue to struggle with the challenge of finding quality data. Our study introduces a novel guidance data augmentation technique utilizing abstracted context and sentence structures to produce varied sentences while maintaining context-entity relationships, addressing data scarcity challenges. By fostering a closer relationship between context, sentence structure, and role of entities, our method enhances data augmentation’s effectiveness. Consequently, by showcasing diversification in both entity-related vocabulary and overall sentence structure, and simultaneously improving the training performance of named entity recognition task.
2023
pdf
abs
Revisiting Intermediate Layer Distillation for Compressing Language Models: An Overfitting Perspective
Jongwoo Ko
|
Seungjoon Park
|
Minchan Jeong
|
Sukjin Hong
|
Euijai Ahn
|
Du-Seong Chang
|
Se-Young Yun
Findings of the Association for Computational Linguistics: EACL 2023
Knowledge distillation (KD) is a highly promising method for mitigating the computational problems of pre-trained language models (PLMs). Among various KD approaches, Intermediate Layer Distillation (ILD) has been a de facto standard KD method with its performance efficacy in the NLP field. In this paper, we find that existing ILD methods are prone to overfitting to training datasets, although these methods transfer more information than the original KD. Next, we present the simple observations to mitigate the overfitting of ILD: distilling only the last Transformer layer and conducting ILD on supplementary tasks. Based on our two findings, we propose a simple yet effective consistency-regularized ILD (CR-ILD), which prevents the student model from overfitting the training dataset. Substantial experiments on distilling BERT on the GLUE benchmark and several synthetic datasets demonstrate that our proposed ILD method outperforms other KD techniques. Our code is available at
https://github.com/jongwooko/CR-ILD.
pdf
abs
NASH: A Simple Unified Framework of Structured Pruning for Accelerating Encoder-Decoder Language Models
Jongwoo Ko
|
Seungjoon Park
|
Yujin Kim
|
Sumyeong Ahn
|
Du-Seong Chang
|
Euijai Ahn
|
Se-Young Yun
Findings of the Association for Computational Linguistics: EMNLP 2023
Structured pruning methods have proven effective in reducing the model size and accelerating inference speed in various network architectures such as Transformers. Despite the versatility of encoder-decoder models in numerous NLP tasks, the structured pruning methods on such models are relatively less explored compared to encoder-only models. In this study, we investigate the behavior of the structured pruning of the encoder-decoder models in the decoupled pruning perspective of the encoder and decoder component, respectively. Our findings highlight two insights: (1) the number of decoder layers is the dominant factor of inference speed, and (2) low sparsity in the pruned encoder network enhances generation quality. Motivated by these findings, we propose a simple and effective framework, NASH, that narrows the encoder and shortens the decoder networks of encoder-decoder models. Extensive experiments on diverse generation and inference tasks validate the effectiveness of our method in both speedup and output quality.
2022
pdf
abs
Understanding and Improving Knowledge Distillation for Quantization Aware Training of Large Transformer Encoders
Minsoo Kim
|
Sihwa Lee
|
Suk-Jin Hong
|
Du-Seong Chang
|
Jungwook Choi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Knowledge distillation (KD) has been a ubiquitous method for model compression to strengthen the capability of a lightweight model with the transferred knowledge from the teacher. In particular, KD has been employed in quantization-aware training (QAT) of Transformer encoders like BERT to improve the accuracy of the student model with the reduced-precision weight parameters. However, little is understood about which of the various KD approaches best fits the QAT of Transformers. In this work, we provide an in-depth analysis of the mechanism of KD on attention recovery of quantized large Transformers. In particular, we reveal that the previously adopted MSE loss on the attention score is insufficient for recovering the self-attention information. Therefore, we propose two KD methods; attention-map and attention-output losses. Furthermore, we explore the unification of both losses to address task-dependent preference between attention-map and output losses. The experimental results on various Transformer encoder models demonstrate that the proposed KD methods achieve state-of-the-art accuracy for QAT with sub-2-bit weight quantization.