2024
pdf
abs
UFCNet: Unsupervised Network based on Fourier transform and Convolutional attention for Oracle Character Recognition
Yanan Zhou
|
Guoqi Liu
|
Yiping Yang
|
Linyuan Ru
|
Dong Liu
|
Xueshan Li
Proceedings of the 1st Workshop on Machine Learning for Ancient Languages (ML4AL 2024)
Oracle bone script (OBS) is the earliest writing system in China, which is of great value in the improvement of archaeology and Chinese cultural history. However, there are some problems such as the lack of labels and the difficulty to distinguish the glyphs from the background of OBS, which makes the automatic recognition of OBS in the real world not achieve the satisfactory effect. In this paper, we propose a character recognition method based on an unsupervised domain adaptive network (UFCNet). Firstly, a convolutional attention fusion module (CAFM) is designed in the encoder to obtain more global features through multi-layer feature fusion. Second, we construct a Fourier transform (FT) module that focuses on the differences between glyphs and backgrounds. Finally, to further improve the network’s ability to recognize character edges, we introduce a kernel norm-constrained loss function. Extensive experiments perform on the Oracle-241 dataset show that the proposed method is superior to other adaptive methods. The code will be available at https://github.com/zhouynan/UFCNet.
pdf
abs
Coarse-to-Fine Generative Model for Oracle Bone Inscriptions Inpainting
Shibin Wang
|
Wenjie Guo
|
Yubo Xu
|
Dong Liu
|
Xueshan Li
Proceedings of the 1st Workshop on Machine Learning for Ancient Languages (ML4AL 2024)
Due to ancient origin, there are many incomplete characters in the unearthed Oracle Bone Inscriptions(OBI), which brings the great challenges to recognition and research. In recent years, image inpainting techniques have made remarkable progress. However, these models are unable to adapt to the unique font shape and complex text background of OBI. To meet these aforementioned challenges, we propose a two-stage method for restoring damaged OBI using Generative Adversarial Networks (GAN), which incorporates a dual discriminator structure to capture both global and local image information. In order to accurately restore the image structure and details, the spatial attention mechanism and a novel loss function are proposed. By feeding clear copies of existing OBI and various types of masks into the network, it learns to generate content for the missing regions. Experimental results demonstrate the effectiveness of our proposed method in completing OBI compared to several state-of-the-art techniques.
2023
pdf
abs
NetEase.AI at SemEval-2023 Task 2: Enhancing Complex Named Entities Recognition in Noisy Scenarios via Text Error Correction and External Knowledge
Ruixuan Lu
|
Zihang Tang
|
Guanglong Hu
|
Dong Liu
|
Jiacheng Li
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
Complex named entities (NE), like the titles of creative works, are not simple nouns and pose challenges for NER systems. In the SemEval 2023, Task 2: MultiCoNER II was proposed, whose goal is to recognize complex entities against out of knowledge-base entities and noisy scenarios. To address the challenges posed by MultiCoNER II, our team NetEase.AI proposed an entity recognition system that integrates text error correction system and external knowledge, which can recognize entities in scenes that contain entities out of knowledge base and text with noise. Upon receiving an input sentence, our systems will correct the sentence, extract the entities in the sentence as candidate set using the entity recognition model that incorporates the gazetteer information, and then use the external knowledge to classify the candidate entities to obtain entity type features. Finally, our system fused the multi-dimensional features of the candidate entities into a stacking model, which was used to select the correct entities from the candidate set as the final output. Our system exhibited good noise resistance and excellent entity recognition performance, resulting in our team’s first place victory in the Chinese track of MultiCoNER II.