Chunchuan Lyu


2022

pdf bib
Proceedings of the Sixth Workshop on Structured Prediction for NLP
Andreas Vlachos | Priyanka Agrawal | André Martins | Gerasimos Lampouras | Chunchuan Lyu
Proceedings of the Sixth Workshop on Structured Prediction for NLP

pdf
DeepSPIN: Deep Structured Prediction for Natural Language Processing
André F. T. Martins | Ben Peters | Chrysoula Zerva | Chunchuan Lyu | Gonçalo Correia | Marcos Treviso | Pedro Martins | Tsvetomila Mihaylova
Proceedings of the 23rd Annual Conference of the European Association for Machine Translation

DeepSPIN is a research project funded by the European Research Council (ERC) whose goal is to develop new neural structured prediction methods, models, and algorithms for improving the quality, interpretability, and data-efficiency of natural language processing (NLP) systems, with special emphasis on machine translation and quality estimation. We describe in this paper the latest findings from this project.

2021

pdf
A Differentiable Relaxation of Graph Segmentation and Alignment for AMR Parsing
Chunchuan Lyu | Shay B. Cohen | Ivan Titov
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Abstract Meaning Representations (AMR) are a broad-coverage semantic formalism which represents sentence meaning as a directed acyclic graph. To train most AMR parsers, one needs to segment the graph into subgraphs and align each such subgraph to a word in a sentence; this is normally done at preprocessing, relying on hand-crafted rules. In contrast, we treat both alignment and segmentation as latent variables in our model and induce them as part of end-to-end training. As marginalizing over the structured latent variables is infeasible, we use the variational autoencoding framework. To ensure end-to-end differentiable optimization, we introduce a differentiable relaxation of the segmentation and alignment problems. We observe that inducing segmentation yields substantial gains over using a ‘greedy’ segmentation heuristic. The performance of our method also approaches that of a model that relies on the segmentation rules of Lyu and Titov (2018), which were hand-crafted to handle individual AMR constructions.

2019

pdf
Semantic Role Labeling with Iterative Structure Refinement
Chunchuan Lyu | Shay B. Cohen | Ivan Titov
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Modern state-of-the-art Semantic Role Labeling (SRL) methods rely on expressive sentence encoders (e.g., multi-layer LSTMs) but tend to model only local (if any) interactions between individual argument labeling decisions. This contrasts with earlier work and also with the intuition that the labels of individual arguments are strongly interdependent. We model interactions between argument labeling decisions through iterative refinement. Starting with an output produced by a factorized model, we iteratively refine it using a refinement network. Instead of modeling arbitrary interactions among roles and words, we encode prior knowledge about the SRL problem by designing a restricted network architecture capturing non-local interactions. This modeling choice prevents overfitting and results in an effective model, outperforming strong factorized baseline models on all 7 CoNLL-2009 languages, and achieving state-of-the-art results on 5 of them, including English.

pdf
Capturing Argument Interaction in Semantic Role Labeling with Capsule Networks
Xinchi Chen | Chunchuan Lyu | Ivan Titov
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Semantic role labeling (SRL) involves extracting propositions (i.e. predicates and their typed arguments) from natural language sentences. State-of-the-art SRL models rely on powerful encoders (e.g., LSTMs) and do not model non-local interaction between arguments. We propose a new approach to modeling these interactions while maintaining efficient inference. Specifically, we use Capsule Networks (Sabour et al., 2017): each proposition is encoded as a tuple of capsules, one capsule per argument type (i.e. role). These tuples serve as embeddings of entire propositions. In every network layer, the capsules interact with each other and with representations of words in the sentence. Each iteration results in updated proposition embeddings and updated predictions about the SRL structure. Our model substantially outperforms the non-refinement baseline model on all 7 CoNLL-2019 languages and achieves state-of-the-art results on 5 languages (including English) for dependency SRL. We analyze the types of mistakes corrected by the refinement procedure. For example, each role is typically (but not always) filled with at most one argument. Whereas enforcing this approximate constraint is not useful with the modern SRL system, iterative procedure corrects the mistakes by capturing this intuition in a flexible and context-sensitive way.

2018

pdf
AMR Parsing as Graph Prediction with Latent Alignment
Chunchuan Lyu | Ivan Titov
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Abstract meaning representations (AMRs) are broad-coverage sentence-level semantic representations. AMRs represent sentences as rooted labeled directed acyclic graphs. AMR parsing is challenging partly due to the lack of annotated alignments between nodes in the graphs and words in the corresponding sentences. We introduce a neural parser which treats alignments as latent variables within a joint probabilistic model of concepts, relations and alignments. As exact inference requires marginalizing over alignments and is infeasible, we use the variational autoencoding framework and a continuous relaxation of the discrete alignments. We show that joint modeling is preferable to using a pipeline of align and parse. The parser achieves the best reported results on the standard benchmark (74.4% on LDC2016E25).