Cheng Qian


2024

pdf
Tell Me More! Towards Implicit User Intention Understanding of Language Model Driven Agents
Cheng Qian | Bingxiang He | Zhong Zhuang | Jia Deng | Yujia Qin | Xin Cong | Zhong Zhang | Jie Zhou | Yankai Lin | Zhiyuan Liu | Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions. Although adept at devising strategies and performing tasks, these agents struggle with seeking clarification and grasping precise user intentions. To bridge this gap, we introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users’ implicit intentions through explicit queries. Next, we propose the incorporation of model experts as the upstream in agent designs to enhance user-agent interaction. Employing IN3, we empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires about user intentions, and refines them into actionable goals before starting downstream agent task execution. Integrating it into the XAgent framework, we comprehensively evaluate the enhanced agent system regarding user instruction understanding and execution, revealing that our approach notably excels at identifying vague user tasks, recovering and summarizing critical missing information, setting precise and necessary agent execution goals, and minimizing redundant tool usage, thus boosting overall efficiency.

pdf
Toolink: Linking Toolkit Creation and Using through Chain-of-Solving on Open-Source Model
Cheng Qian | Chenyan Xiong | Zhenghao Liu | Zhiyuan Liu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) have demonstrated remarkable progress in utilizing tools, but their closed-source nature and high inference costs pose limitations on their adaptability, necessitating a valid method that leverages smaller, open-sourced models. In this paper, we introduce Toolink, a comprehensive framework that performs task-solving by first creating a toolkit and then integrating the planning and calling of tools through a chain-of-solving (CoS) approach. We first validate the efficacy of Toolink in harnessing the model’s creativity and CoS ability on ChatGPT. Subsequently, we curate CoS-GPT, a chain-of-solving dataset designed for tool-using, and finetune the LLaMA-7B model. It results in LLaMA-CoS, a powerful open-source model with advanced tool-planning and tool-calling capabilities. Evaluation of diverse tasks from BIG-bench demonstrates its CoS ability matches that of ChatGPT while its performance surpasses the chain-of-thought approach. Further studies highlight the generalization of LLaMA-CoS to unseen tasks and showcase its capability in using toolkits not explicitly tailored for the target task, affirming its robustness in real-world scenarios. All codes and data are released.

2023

pdf
Recyclable Tuning for Continual Pre-training
Yujia Qin | Cheng Qian | Xu Han | Yankai Lin | Huadong Wang | Ruobing Xie | Zhiyuan Liu | Maosong Sun | Jie Zhou
Findings of the Association for Computational Linguistics: ACL 2023

Continual pre-training is the paradigm where pre-trained language models (PLMs) continually acquire fresh knowledge from growing data and gradually get upgraded. Before an upgraded PLM is released, we may have tuned the original PLM for various tasks and stored the adapted weights. However, when tuning the upgraded PLM, these outdated adapted weights will typically be ignored and discarded, causing a potential waste of resources. We bring this issue to the forefront and contend that proper algorithms for recycling outdated adapted weights should be developed. To this end, we formulate the task of recyclable tuning for continual pre-training. In pilot studies, we find that after continual pre-training, the upgraded PLM remains compatible with the outdated adapted weights to some extent. Motivated by this finding, we analyze the connection between continually pre-trained PLMs from two novel aspects, i.e., mode connectivity, and functional similarity. Based on the corresponding findings, we propose both an initialization-based method and a distillation-based method for our task. We demonstrate their feasibility in improving the convergence and performance for tuning the upgraded PLM. We also show that both methods can be combined to achieve better performance.

pdf
CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models
Cheng Qian | Chi Han | Yi Fung | Yujia Qin | Zhiyuan Liu | Heng Ji
Findings of the Association for Computational Linguistics: EMNLP 2023

Large Language Models (LLMs) have made significant progress in utilizing tools, but their ability is limited by API availability and the instability of implicit reasoning, particularly when both planning and execution are involved. To overcome these limitations, we propose CREATOR, a novel framework that enables LLMs to create their own tools using documentation and code realization. CREATOR disentangles abstract tool creation and concrete decision execution, resulting in improved performance. We evaluate CREATOR on MATH and TabMWP benchmarks, respectively consisting of challenging math competition problems and diverse tabular contents. Remarkably, CREATOR outperforms existing chain-of-thought, program-of-thought, and tool-using baselines. Additionally, we introduce the Creation Challenge dataset, featuring 2K diverse questions, to emphasize the necessity and benefits of LLMs’ tool creation ability. Further research demonstrates that leveraging LLMs as tool creators facilitates knowledge transfer, and LLMs exhibit varying levels of tool creation abilities, enabling them to adapt to diverse situations. The tool creation ability revolutionizes the LLM’s problem-solving paradigm, driving us closer to the next frontier of artificial intelligence.

2022

pdf
Exploring Mode Connectivity for Pre-trained Language Models
Yujia Qin | Cheng Qian | Jing Yi | Weize Chen | Yankai Lin | Xu Han | Zhiyuan Liu | Maosong Sun | Jie Zhou
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent years have witnessed the prevalent application of pre-trained language models (PLMs) in NLP. From the perspective of parameter space, PLMs provide generic initialization, starting from which high-performance minima could be found. Although plenty of works have studied how to effectively and efficiently adapt PLMs to high-performance minima, little is known about the connection of various minima reached under different adaptation configurations. In this paper, we investigate the geometric connections of different minima through the lens of mode connectivity, which measures whether two minima can be connected with a low-loss path. We conduct empirical analyses to investigate three questions: (1) how could hyperparameters, specific tuning methods, and training data affect PLM’s mode connectivity? (2) How does mode connectivity change during pre-training? (3) How does the PLM’s task knowledge change along the path connecting two minima? In general, exploring the mode connectivity of PLMs conduces to understanding the geometric connection of different minima, which may help us fathom the inner workings of PLM downstream adaptation. The codes are publicly available at https://github.com/thunlp/Mode-Connectivity-PLM.

pdf
Distinguish Sense from Nonsense: Out-of-Scope Detection for Virtual Assistants
Cheng Qian | Haode Qi | Gengyu Wang | Ladislav Kunc | Saloni Potdar
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Out of Scope (OOS) detection in Conversational AI solutions enables a chatbot to handle a conversation gracefully when it is unable to make sense of the end-user query. Accurately tagging a query as out-of-domain is particularly hard in scenarios when the chatbot is not equipped to handle a topic which has semantic overlap with an existing topic it is trained on. We propose a simple yet effective OOS detection method that outperforms standard OOS detection methods in a real-world deployment of virtual assistants. We discuss the various design and deployment considerations for a cloud platform solution to train virtual assistants and deploy them at scale. Additionally, we propose a collection of datasets that replicates real-world scenarios and show comprehensive results in various settings using both offline and online evaluation metrics.

pdf
Benchmarking Language-agnostic Intent Classification for Virtual Assistant Platforms
Gengyu Wang | Cheng Qian | Lin Pan | Haode Qi | Ladislav Kunc | Saloni Potdar
Proceedings of the Workshop on Multilingual Information Access (MIA)

Current virtual assistant (VA) platforms are beholden to the limited number of languages they support. Every component, such as the tokenizer and intent classifier, is engineered for specific languages in these intricate platforms. Thus, supporting a new language in such platforms is a resource-intensive operation requiring expensive re-training and re-designing. In this paper, we propose a benchmark for evaluating language-agnostic intent classification, the most critical component of VA platforms. To ensure the benchmarking is challenging and comprehensive, we include 29 public and internal datasets across 10 low-resource languages and evaluate various training and testing settings with consideration of both accuracy and training time. The benchmarking result shows that Watson Assistant, among 7 commercial VA platforms and pre-trained multilingual language models (LMs), demonstrates close-to-best accuracy with the best accuracy-training time trade-off.