Bingqian Lin


2024

pdf
MapGPT: Map-Guided Prompting with Adaptive Path Planning for Vision-and-Language Navigation
Jiaqi Chen | Bingqian Lin | Ran Xu | Zhenhua Chai | Xiaodan Liang | Kwan-Yee Wong
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Embodied agents equipped with GPT as their brain have exhibited extraordinary decision-making and generalization abilities across various tasks. However, existing zero-shot agents for vision-and-language navigation (VLN) only prompt the GPT-4 to select potential locations within localized environments, without constructing an effective “global-view” for the agent to understand the overall environment. In this work, we present a novel **map**-guided **GPT**-based agent, dubbed **MapGPT**, which introduces an online linguistic-formed map to encourage the global exploration. Specifically, we build an online map and incorporate it into the prompts that include node information and topological relationships, to help GPT understand the spatial environment. Benefiting from this design, we further propose an adaptive planning mechanism to assist the agent in performing multi-step path planning based on a map, systematically exploring multiple candidate nodes or sub-goals step by step. Extensive experiments demonstrate that our MapGPT is applicable to both GPT-4 and GPT-4V, achieving state-of-the-art zero-shot performance on the R2R and REVERIE simultaneously (~10% and ~12% improvements in SR), and showcasing the newly emergent global thinking and path planning abilities of the GPT.

2022

pdf
RelCLIP: Adapting Language-Image Pretraining for Visual Relationship Detection via Relational Contrastive Learning
Yi Zhu | Zhaoqing Zhu | Bingqian Lin | Xiaodan Liang | Feng Zhao | Jianzhuang Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Conventional visual relationship detection models only use the numeric ids of relation labels for training, but ignore the semantic correlation between the labels, which leads to severe training biases and harms the generalization ability of representations. In this paper, we introduce compact language information of relation labels for regularizing the representation learning of visual relations. Specifically, we propose a simple yet effective visual Relationship prediction framework that transfers natural language knowledge learned from Contrastive Language-Image Pre-training (CLIP) models to enhance the relationship prediction, termed RelCLIP. Benefiting from the powerful visual-semantic alignment ability of CLIP at image level, we introduce a novel Relational Contrastive Learning (RCL) approach which explores relation-level visual-semantic alignment via learning to match cross-modal relational embeddings. By collaboratively learning the semantic coherence and discrepancy from relation triplets, the model can generate more discriminative and robust representations. Experimental results on the Visual Genome dataset show that RelCLIP achieves significant improvements over strong baselines under full (provide accurate labels) and distant supervision (provide noise labels), demonstrating its powerful generalization ability in learning relationship representations. Code will be available at https://gitee.com/mindspore/models/tree/master/research/cv/RelCLIP.