Benjamin Radford


2022

pdf
Political Event Coding as Text-to-Text Sequence Generation
Yaoyao Dai | Benjamin Radford | Andrew Halterman
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

We report on the current status of an effort to produce political event data from unstructured text via a Transformer language model. Compelled by the current lack of publicly available and up-to-date event coding software, we seek to train a model that can produce structured political event records at the sentence level. Our approach differs from previous efforts in that we conceptualize this task as one of text-to-text sequence generation. We motivate this choice by outlining desirable properties of text generation models for the needs of event coding. To overcome the lack of sufficient training data, we also describe a method for generating synthetic text and event record pairs that we use to fit our model.

2020

pdf
Seeing the Forest and the Trees: Detection and Cross-Document Coreference Resolution of Militarized Interstate Disputes
Benjamin Radford
Proceedings of the Workshop on Automated Extraction of Socio-political Events from News 2020

Previous efforts to automate the detection of social and political events in text have primarily focused on identifying events described within single sentences or documents. Within a corpus of documents, these automated systems are unable to link event references—recognize singular events across multiple sentences or documents. A separate literature in computational linguistics on event coreference resolution attempts to link known events to one another within (and across) documents. I provide a data set for evaluating methods to identify certain political events in text and to link related texts to one another based on shared events. The data set, Headlines of War, is built on the Militarized Interstate Disputes data set and offers headlines classified by dispute status and headline pairs labeled with coreference indicators. Additionally, I introduce a model capable of accomplishing both tasks. The multi-task convolutional neural network is shown to be capable of recognizing events and event coreferences given the headlines’ texts and publication dates.