This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
We present NovaCOMET, an open commonsense knowledge model, that combines the best aspects of knowledge and general task models. Compared to previous knowledge models, NovaCOMET allows open-format relations enabling direct application to reasoning tasks; compared to general task models like Flan-T5, it explicitly centers knowledge, enabling superior performance for commonsense reasoning. NovaCOMET leverages the knowledge of opaque proprietary models to create an open knowledge pipeline. First, knowledge is symbolically distilled into NovATOMIC, a publicly-releaseddiscrete knowledge graph which can be audited, critiqued, and filtered. Next, we train NovaCOMET on NovATOMIC by fine-tuning an open-source pretrained model. NovaCOMET uses an open-format training objective, replacing the fixed relation sets of past knowledge models, enabling arbitrary structures within the data to serve as inputs or outputs. The resulting generation model, optionally augmented with human annotation, matches or exceeds comparable open task models like Flan-T5 on a range of commonsense generation tasks. NovaCOMET serves as a counterexample to the contemporary focus on instruction tuning only, demonstrating a distinct advantage to explicitly modeling commonsense knowledge as well.
We present Stanceosaurus, a new corpus of 28,033 tweets in English, Hindi and Arabic annotated with stance towards 250 misinformation claims. As far as we are aware, it is the largest corpus annotated with stance towards misinformation claims. The claims in Stanceosaurus originate from 15 fact-checking sources that cover diverse geographical regions and cultures. Unlike existing stance datasets, we introduce a more fine-grained 5-class labeling strategy with additional subcategories to distinguish implicit stance. Pre-trained transformer-based stance classifiers that are fine-tuned on our corpus show good generalization on unseen claims and regional claims from countries outside the training data. Cross-lingual experiments demonstrate Stanceosaurus’ capability of training multilingual models, achieving 53.1 F1 on Hindi and 50.4 F1 on Arabic without any target-language fine-tuning. Finally, we show how a domain adaptation method can be used to improve performance on Stanceosaurus using additional RumourEval-2019 data. We will make Stanceosaurus publicly available to the research community upon publication and hope it will encourage further work on misinformation identification across languages and cultures.
We present a manually annotated corpus of 10,000 tweets containing public reports of five COVID-19 events, including positive and negative tests, deaths, denied access to testing, claimed cures and preventions. We designed slot-filling questions for each event type and annotated a total of 28 fine-grained slots, such as the location of events, recent travel, and close contacts. We show that our corpus can support fine-tuning BERT-based classifiers to automatically extract publicly reported events, which can be further collected for building a knowledge base. Our knowledge base is constructed over Twitter data covering two years and currently covers over 4.2M events. It can answer complex queries with high precision, such as “Which organizations have employees that tested positive in Philadelphia?” We believe our proposed methodology could be quickly applied to develop knowledge bases for new domains in response to an emerging crisis, including natural disasters or future disease outbreaks.
Dialogue models trained on human conversations inadvertently learn to generate toxic responses. In addition to producing explicitly offensive utterances, these models can also implicitly insult a group or individual by aligning themselves with an offensive statement. To better understand the dynamics of contextually offensive language, we investigate the stance of dialogue model responses in offensive Reddit conversations. Specifically, we create ToxiChat, a crowd-annotated dataset of 2,000 Reddit threads and model responses labeled with offensive language and stance. Our analysis reveals that 42% of human responses agree with toxic comments, whereas only 13% agree with safe comments. This undesirable behavior is learned by neural dialogue models, such as DialoGPT, which we show are two times more likely to agree with offensive comments. To enable automatic detection of offensive language, we fine-tuned transformer-based classifiers on ToxiChat that achieve 0.71 F1 for offensive labels and 0.53 Macro-F1 for stance labels. Finally, we quantify the effectiveness of controllable text generation (CTG) methods to mitigate the tendency of neural dialogue models to agree with offensive comments. Compared to the baseline, our best CTG model achieves a 19% reduction in agreement with offensive comments and produces 29% fewer offensive replies. Our work highlights the need for further efforts to characterize and analyze inappropriate behavior in dialogue models, in order to help make them safer.
Question answering (QA) is an important aspect of open-domain conversational agents, garnering specific research focus in the conversational QA (ConvQA) subtask. One notable limitation of recent ConvQA efforts is the response being answer span extraction from the target corpus, thus ignoring the natural language generation (NLG) aspect of high-quality conversational agents. In this work, we propose a method for situating QA responses within a SEQ2SEQ NLG approach to generate fluent grammatical answer responses while maintaining correctness. From a technical perspective, we use data augmentation to generate training data for an end-to-end system. Specifically, we develop Syntactic Transformations (STs) to produce question-specific candidate answer responses and rank them using a BERT-based classifier (Devlin et al., 2019). Human evaluation on SQuAD 2.0 data (Rajpurkar et al., 2018) demonstrate that the proposed model outperforms baseline CoQA and QuAC models in generating conversational responses. We further show our model’s scalability by conducting tests on the CoQA dataset. The code and data are available at https://github.com/abaheti95/QADialogSystem.
Neural conversation models tend to generate safe, generic responses for most inputs. This is due to the limitations of likelihood-based decoding objectives in generation tasks with diverse outputs, such as conversation. To address this challenge, we propose a simple yet effective approach for incorporating side information in the form of distributional constraints over the generated responses. We propose two constraints that help generate more content rich responses that are based on a model of syntax and topics (Griffiths et al., 2005) and semantic similarity (Arora et al., 2016). We evaluate our approach against a variety of competitive baselines, using both automatic metrics and human judgments, showing that our proposed approach generates responses that are much less generic without sacrificing plausibility. A working demo of our code can be found at https://github.com/abaheti95/DC-NeuralConversation.