This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
In this work, we present a collaboratively and continuously developed open-source educational resource (OSER) for teaching natural language processing at two different universities. We shed light on the principles we followed for the initial design of the course and the rationale for ongoing developments, followed by a reflection on the inter-university collaboration for designing and maintaining teaching material. When reflecting on the latter, we explicitly emphasize the considerations that need to be made when facing heterogeneous groups and when having to accommodate multiple examination regulations within one single course framework. Relying on the fundamental principles of OSER developments as defined by Bothmann et al. (2023) proved to be an important guideline during this process. The final part pertains to open-sourcing our teaching material, coping with the increasing speed of developments in the field, and integrating the course digitally, also addressing conflicting priorities and challenges we are currently facing.
Traditional image clustering techniques only find a single grouping within visual data. In particular, they do not provide a possibility to explicitly define multiple types of clustering. This work explores the potential of large vision-language models to facilitate alternative image clustering. We propose Text-Guided Alternative Image Consensus Clustering (TGAICC), a novel approach that leverages user-specified interests via prompts to guide the discovery of diverse clusterings. To achieve this, it generates a clustering for each prompt, groups them using hierarchical clustering, and then aggregates them using consensus clustering. TGAICC outperforms image- and text-based baselines on four alternative image clustering benchmark datasets. Furthermore, using count-based word statistics, we are able to obtain text-based explanations of the alternative clusterings. In conclusion, our research illustrates how contemporary large vision-language models can transform explanatory data analysis, enabling the generation of insightful, customizable, and diverse image clusterings.
Knowledge graph embeddings (KGEs) were originally developed to infer true but missing facts in incomplete knowledge repositories.In this paper, we link knowledge graph completion and counterfactual reasoning via our new task CFKGR. We model the original world state as a knowledge graph, hypothetical scenarios as edges added to the graph, and plausible changes to the graph as inferences from logical rules. We create corresponding benchmark datasets, which contain diverse hypothetical scenarios with plausible changes to the original knowledge graph and facts that should be retained. We develop COULDD, a general method for adapting existing knowledge graph embeddings given a hypothetical premise, and evaluate it on our benchmark. Our results indicate that KGEs learn patterns in the graph without explicit training. We further observe that KGEs adapted with COULDD solidly detect plausible counterfactual changes to the graph that follow these patterns. An evaluation on human-annotated data reveals that KGEs adapted with COULDD are mostly unable to recognize changes to the graph that do not follow learned inference rules. In contrast, ChatGPT mostly outperforms KGEs in detecting plausible changes to the graph but has poor knowledge retention. In summary, CFKGR connects two previously distinct areas, namely KG completion and counterfactual reasoning.
Image clustering divides a collection of images into meaningful groups, typically interpreted post-hoc via human-given annotations. Those are usually in the form of text, begging the question of using text as an abstraction for image clustering. Current image clustering methods, however, neglect the use of generated textual descriptions. We, therefore, propose Text-Guided Image Clustering, i.e., generating text using image captioning and visual question-answering (VQA) models and subsequently clustering the generated text. Further, we introduce a novel approach to inject task- or domain knowledge for clustering by prompting VQA models. Across eight diverse image clustering datasets, our results show that the obtained text representations often outperform image features. Additionally, we propose a counting-based cluster explainability method. Our evaluations show that the derived keyword-based explanations describe clusters better than the respective cluster accuracy suggests. Overall, this research challenges traditional approaches and paves the way for a paradigm shift in image clustering, using generated text.
Weakly supervised learning is a popular approach for training machine learning models in low-resource settings. Instead of requesting high-quality yet costly human annotations, it allows training models with noisy annotations obtained from various weak sources. Recently, many sophisticated approaches have been proposed for robust training under label noise, reporting impressive results. In this paper, we revisit the setup of these approaches and find that the benefits brought by these approaches are significantly overestimated. Specifically, we find that the success of existing weakly supervised learning approaches heavily relies on the availability of clean validation samples which, as we show, can be leveraged much more efficiently by simply training on them. After using these clean labels in training, the advantages of using these sophisticated approaches are mostly wiped out. This remains true even when reducing the size of the available clean data to just five samples per class, making these approaches impractical. To understand the true value of weakly supervised learning, we thoroughly analyze diverse NLP datasets and tasks to ascertain when and why weakly supervised approaches work. Based on our findings, we provide recommendations for future research.
Evidently, words can have multiple senses. For example, the word mess refers to a place to have food or to a confusing situation. How exactly multiple senses emerge is less clear. In this work, we propose and analyze a mathematical model of the evolution of lexical meaning to investigate mechanisms leading to polysemy. This model features factors that have been discussed to impact the semantic processing and transmission of words: word frequency, non-conformism, and semantic discriminability. We formally derive conditions under which a sense of a word tends to diversify itself into multiple senses that coexist stably. The model predicts that diversification is promoted by low frequency, a strong bias for non-conformist usage, and high semantic discriminability. We statistically validate these predictions with historical language data covering semantic developments of a set of English words. Multiple alternative measures are used to operationalize each variable involved, and we confirm the predicted tendencies for twelve combinations of measures.
In the weakly supervised learning paradigm, labeling functions automatically assign heuristic, often noisy, labels to data samples. In this work, we provide a method for learning from weak labels by separating two types of complementary information associated with the labeling functions: information related to the target label and information specific to one labeling function only. Both types of information are reflected to different degrees by all labeled instances. In contrast to previous works that aimed at correcting or removing wrongly labeled instances, we learn a branched deep model that uses all data as-is, but splits the labeling function information in the latent space. Specifically, we propose the end-to-end model SepLL which extends a transformer classifier by introducing a latent space for labeling function specific and task-specific information. The learning signal is only given by the labeling functions matches, no pre-processing or label model is required for our method. Notably, the task prediction is made from the latent layer without any direct task signal. Experiments on Wrench text classification tasks show that our model is competitive with the state-of-the-art, and yields a new best average performance.
A popular approach to decrease the need for costly manual annotation of large data sets is weak supervision, which introduces problems of noisy labels, coverage and bias. Methods for overcoming these problems have either relied on discriminative models, trained with cost functions specific to weak supervision, and more recently, generative models, trying to model the output of the automatic annotation process. In this work, we explore a novel direction of generative modeling for weak supervision”:” Instead of modeling the output of the annotation process (the labeling function matches), we generatively model the input-side data distributions (the feature space) covered by labeling functions. Specifically, we estimate a density for each weak labeling source, or labeling function, by using normalizing flows. An integral part of our method is the flow-based modeling of multiple simultaneously matching labeling functions, and therefore phenomena such as labeling function overlap and correlations are captured. We analyze the effectiveness and modeling capabilities on various commonly used weak supervision data sets, and show that weakly supervised normalizing flows compare favorably to standard weak supervision baselines.
Strategies for improving the training and prediction quality of weakly supervised machine learning models vary in how much they are tailored to a specific task or integrated with a specific model architecture. In this work, we introduce Knodle, a software framework that treats weak data annotations, deep learning models, and methods for improving weakly supervised training as separate, modular components. This modularization gives the training process access to fine-grained information such as data set characteristics, matches of heuristic rules, or elements of the deep learning model ultimately used for prediction. Hence, our framework can encompass a wide range of training methods for improving weak supervision, ranging from methods that only look at correlations of rules and output classes (independently of the machine learning model trained with the resulting labels), to those that harness the interplay of neural networks and weakly labeled data. We illustrate the benchmarking potential of the framework with a performance comparison of several reference implementations on a selection of datasets that are already available in Knodle.