Alba Cercas Curry
2024
Angry Men, Sad Women: Large Language Models Reflect Gendered Stereotypes in Emotion Attribution
Flor Plaza-del-Arco
|
Amanda Curry
|
Alba Cercas Curry
|
Gavin Abercrombie
|
Dirk Hovy
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) reflect societal norms and biases, especially about gender. While societal biases and stereotypes have been extensively researched in various NLP applications, there is a surprising gap for emotion analysis. However, emotion and gender are closely linked in societal discourse. E.g., women are often thought of as more empathetic, while men’s anger is more socially accepted. To fill this gap, we present the first comprehensive study of gendered emotion attribution in five state-of-the-art LLMs (open- and closed-source). We investigate whether emotions are gendered, and whether these variations are based on societal stereotypes. We prompt the models to adopt a gendered persona and attribute emotions to an event like ‘When I had a serious argument with a dear person’. We then analyze the emotions generated by the models in relation to the gender-event pairs. We find that all models consistently exhibit gendered emotions, influenced by gender stereotypes. These findings are in line with established research in psychology and gender studies. Our study sheds light on the complex societal interplay between language, gender, and emotion. The reproduction of emotion stereotypes in LLMs allows us to use those models to study the topic in detail, but raises questions about the predictive use of those same LLMs for emotion applications.
2023
Computer says “No”: The Case Against Empathetic Conversational AI
Alba Cercas Curry
|
Amanda Cercas Curry
Findings of the Association for Computational Linguistics: ACL 2023
Emotions are an integral part of human cognition and they guide not only our understanding of the world but also our actions within it. As such, whether we soothe or flame an emotion is not inconsequential. Recent work in conversational AI has focused on responding empathetically to users, validating and soothing their emotions without a real basis. This AI-aided emotional regulation can have negative consequences for users and society, tending towards a one-noted happiness defined as only the absence of “negative” emotions. We argue that we must carefully consider whether and how to respond to users’ emotions.
Search