Abdul-Baquee Sharaf
Also published as: Abdul-Baquee M. Sharaf
2012
QurAna: Corpus of the Quran annotated with Pronominal Anaphora
Abdul-Baquee Sharaf
|
Eric Atwell
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)
This paper presents QurAna: a large corpus created from the original Quranic text, where personal pronouns are tagged with their antecedence. These antecedents are maintained as an ontological list of concepts, which have proved helpful for information retrieval tasks. QurAna is characterized by: (a) comparatively large number of pronouns tagged with antecedent information (over 24,500 pronouns), and (b) maintenance of an ontological concept list out of these antecedents. We have shown useful applications of this corpus. This corpus is first of its kind considering classical Arabic text, which could be used for interesting applications for Modern Standard Arabic as well. This corpus would benefit researchers in obtaining empirical and rules in building new anaphora resolution approaches. Also, such corpus would be used to train, optimize and evaluate existing approaches.
QurSim: A corpus for evaluation of relatedness in short texts
Abdul-Baquee Sharaf
|
Eric Atwell
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)
This paper presents a large corpus created from the original Quranic text, where semantically similar or related verses are linked together. This corpus will be a valuable evaluation resource for computational linguists investigating similarity and relatedness in short texts. Furthermore, this dataset can be used for evaluation of paraphrase analysis and machine translation tasks. Our dataset is characterised by: (1) superior quality of relatedness assignment; as we have incorporated relations marked by well-known domain experts, this dataset could thus be considered a gold standard corpus for various evaluation tasks, (2) the size of our dataset; over 7,600 pairs of related verses are collected from scholarly sources with several levels of degree of relatedness. This dataset could be extended to over 13,500 pairs of related verses observing the commutative property of strongly related pairs. This dataset was incorporated into online query pages where users can visualize for a given verse a network of all directly and indirectly related verses. Empirical experiments showed that only 33% of related pairs shared root words, emphasising the need to go beyond common lexical matching methods, and incorporate -in addition- semantic, domain knowledge, and other corpus-based approaches.
2010
Syntactic Annotation Guidelines for the Quranic Arabic Dependency Treebank
Kais Dukes
|
Eric Atwell
|
Abdul-Baquee M. Sharaf
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)
The Quranic Arabic Dependency Treebank (QADT) is part of the Quranic Arabic Corpus (http://corpus.quran.com), an online linguistic resource organized by the University of Leeds, and developed through online collaborative annotation. The website has become a popular study resource for Arabic and the Quran, and is now used by over 1,500 researchers and students daily. This paper presents the treebank, explains the choice of syntactic representation, and highlights key parts of the annotation guidelines. The text being analyzed is the Quran, the central religious book of Islam, written in classical Quranic Arabic (c. 600 CE). To date, all 77,430 words of the Quran have a manually verified morphological analysis, and syntactic analysis is in progress. 11,000 words of Quranic Arabic have been syntactically annotated as part of a gold standard treebank. Annotation guidelines are especially important to promote consistency for a corpus which is being developed through online collaboration, since often many people will participate from different backgrounds and with different levels of linguistic expertise. The treebank is available online for collaborative correction to improve accuracy, with suggestions reviewed by expert Arabic linguists, and compared against existing published books of Quranic Syntax.