EMNLP 2018

The 2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP

Proceedings of the First Workshop

November 1, 2018
Brussels, Belgium

Sponsored by:

amazon Jomstonns

(©2018 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ISBN 978-1-948087-71-1

ii

Introduction

BlackboxNLP is the first workshop on analyzing and interpreting neural networks for NLP, hosted by
the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 2018) in Brussels,
Belgium.

The goal of this workshop is to bring together people who are attempting to peek inside the neural
network black box, taking inspiration from machine learning, psychology, linguistics and neuroscience.
Neural networks have rapidly become a central component in language and speech understanding
systems in the last few years. The improvements in accuracy and performance brought by the
introduction of neural networks has typically come at the cost of our understanding of the system: what
are the representations and computations that the network learns?

We received an impressive number of 76 submissions (including both archival papers and extended
abstracts), suggesting that the issue of interpretability of neural networks is timely and important within
the NLP community. The final program contains three keynote talks, eight oral presentations and 47
posters. We hope this workshop provides a venue for bringing together ideas and stimulate new ways of
building methods and resources for facilitating better analysis and understanding of the inner-dynamics
of neural networks for NLP.

BlackboxNLP would not have been possible without the dedication of its program committee. We would
like to thank them for their invaluable effort in providing high-quality reviews in a very short period
of time and for a higher number of submission originally expected. We are also grateful to our invited
speakers, Leila Wehbe, Graham Neubig and Yoav Goldberg for contributing to our program. Finally,
we are very thankful to our sponsors, Amazon and the Department of Cognitive Science, Johns Hopkins
University for supporting the workshop.

Tal Linzen, Grzegorz Chrupata and Afra Alishahi

iii

Organizers:

Tal Linzen, Johns Hopkins University
Grzegorz Chrupata, Tilburg University
Afra Alishahi, Tilburg University

Program Committee:

Zeljko Agié, IT University of Copenhagen
Niranjan Balasubramanian, Stony Brook University

Roberto Basili, University of Roma, Tor Vergata

Laurent Besacier, LIG

Yonatan Belinkov, MIT CSAIL

Or Biran, n-Join

Pravesh Biyani, IIIT Delhi

Arianna Bisazza, Leiden University

Samuel Bowman, New York University

Bill Byrne, University of Cambridge

Kyunghyun Cho, New York University

Ryan Cotterell, Johns Hopkins University

Barry Devereux, Queen’s University, Belfast

Ewan Dunbar, Ecole Normale Supérieure et Ecole des Hautes Etudes en Sciences Sociales
Indranil Dutta, The English and Foreign Languages University

Allyson Ettinger, University of Maryland

Antske Fokkens, VU Amsterdam

Robert Frank, Yale University

Alona Fyshe, University of Alberta

Lieke Gelderloos, Tilburg University

Yoav Goldberg, Bar Ilan University

John Hale, Cornell University and Google DeepMind

David Harwath, Massachusetts Institute of Technology

Akos Kadar, Tilburg University

Philipp Koehn, Johns Hopkins University

Adhiguna Kuncoro, University of Oxford and DeepMind

Ignacio lacobacci, Sapienza University of Rome

Angeliki Lazaridou, DeepMind

Miryam de Lhoneux, Uppsala University

Nelson F. Liu, University of Washington

Adam Lopez, University of Edinburgh

David Marecek, Charles University in Prague

Rebecca Marvin, Johns Hopkins University

Paola Merlo, University of Geneva

Marie-Francine Moens, KU Leuven

Yves Peirsman, NLP Town

Mohammad Taher Pilehvar, University of Cambridge

Barbara Plank, IT University of Copenhagen
Delip Rao, Johns Hopkins University
Brian Roark, Google Inc.

Jan Snajder, University of Zagreb

Whitney Tabor, University of Connecticut

Adina Williams, New York University

Fabio Massimo Zanzotto, University of Rome Tor Vergata
Willem Zuidema, University of Amsterdam

Invited Speakers:

Yoav Goldberg, Bar Ilan University
Graham Neubig, Carnegie Mellon University
Leila Wehbe, Carnegie Mellon University

vi

Table of Contents

Keynote Talks

Trying to Understand Recurrent Neural Networks for Language Processing.
Y0av GOIADEIEot XVi

Learning with Latent Linguistic Structure.
Graham Neubigo e XVii

Language representations in human brains and artificial neural networks.
Leila Wehbe.o Xviii

Archival Papers

When does deep multi-task learning work for loosely related document classification tasks?
Emma Kerinec, Chloé Braud and Anders Sggaard..................c ... 1

Analyzing Learned Representations of a Deep ASR Performance Prediction Model
Zied Elloumi, Laurent Besacier, Olivier Galibert and Benjamin Lecouteux..................... 9

Explaining non-linear Classifier Decisions within Kernel-based Deep Architectures
Danilo Croce, Daniele Rossini and Roberto Basili............o oot 16

Nightmare at test time: How punctuation prevents parsers from generalizing
Anders Sggaard, Miryam de Lhoneux and Isabelle Augenstein 25

Evaluating Textual Representations through Image Generation
Graham Spinks and Marie-Francine Moens. 30

On the Role of Text Preprocessing in Neural Network Architectures: An Evaluation Study on Text Cate-
gorization and Sentiment Analysis
Jose Camacho-Collados and Mohammad Taher Pilehvar................ 40

Jump to better conclusions: SCAN both left and right
Joost Bastings, Marco Baroni, Jason Weston, Kyunghyun Cho and Douwe Kiela.............. 47

Understanding Convolutional Neural Networks for Text Classification
Alon Jacovi, Oren Sar Shalom and Yoav Goldberg, 56

Linguistic representations in multi-task neural networks for ellipsis resolution
Ola Rgnning, Daniel Hardt and Anders Sggaardcoiiiiiiiiiiieeeiiiinnn.. 66

Unsupervised Token-wise Alignment to Improve Interpretation of Encoder-Decoder Models
Shun Kiyono, Sho Takase, Jun Suzuki, Naoaki Okazaki, Kentaro Inui and Masaaki Nagata..... 74

Rule induction for global explanation of trained models
Madhumita Sushil, Simon Suster and Walter Daelemans................. ... oo, 82

vii

Can LSTM Learn to Capture Agreement? The Case of Basque
Shauli Ravfogel, Yoav Goldberg and Francis Tyers................ooiiiiiiii i, 98

Rearranging the Familiar: Testing Compositional Generalization in Recurrent Networks
Joao Loula, Marco Baroni and Brenden Lake 108

Evaluating the Ability of LSTMs to Learn Context-Free Grammars
Luzi Sennhauser and Robert Berwick......... ... i 115

Interpretable Neural Architectures for Attributing an Ad’s Performance to its Writing Style
Reid Pryzant, Sugato Basu and Kazoo Sone 125

Interpreting Neural Networks with Nearest Neighbors
Eric Wallace, Shi Feng and Jordan Boyd-Graber............. i, 136

‘Indicatements’ that character language models learn English morpho-syntactic units and regularities
Yova Kementchedjhieva and Adam Lopez. i 145

LISA: Explaining Recurrent Neural Network Judgments via Layer-wlse Semantic Accumulation and Ex-
ample to Pattern Transformation
Pankaj Gupta and Hinrich Schiitze e 154

Analysing the potential of seq-to-seq models for incremental interpretation in task-oriented dialogue
Dieuwke Hupkes, Sanne Bouwmeester and Raquel Ferndndez. 165

An Operation Sequence Model for Explainable Neural Machine Translation
Felix Stahlberg, Danielle Saunders and Bill Byrne o i ... 175

Introspection for convolutional automatic speech recognition
Andreas Krug and Sebastian Stober e 187

Learning and Evaluating Sparse Interpretable Sentence Embeddings
Valentin Trifonov, Octavian-Eugen Ganea, Anna Potapenko and Thomas Hofmann........... 200

What do RNN Language Models Learn about Filler—-Gap Dependencies?
Ethan Wilcox, Roger Levy, Takashi Morita and Richard Futrell............................. 211

Do Language Models Understand Anything? On the Ability of LSTMs to Understand Negative Polarity
Items
Jaap Jumelet and Dieuwke Hupkes i e 222

Closing Brackets with Recurrent Neural Networks
Natalia Skachkova, Thomas Trost and Dietrich Klakow..........ot 232

Under the Hood: Using Diagnostic Classifiers to Investigate and Improve how Language Models Track
Agreement Information
Mario Giulianelli, Jack Harding, Florian Mohnert, Dieuwke Hupkes and Willem Zuidema 240

Iterative Recursive Attention Model for Interpretable Sequence Classification
Martin Tutek and Jan Snajder. oot 249

Interpreting Word-Level Hidden State Behaviour of Character-Level LSTM Language Models
Avery Hiebert, Cole Peterson, Alona Fyshe and Nishant Mehta............................. 258

Importance of Self-Attention for Sentiment Analysis
Gaél Letarte, Frédérik Paradis, Philippe Giguere and Francois Laviolette 267

viii

Firearms and Tigers are Dangerous, Kitchen Knives and Zebras are Not: Testing whether Word Embed-
dings Can Tell
Pia Sommerauer and Antske Fokkens........... . .. i i 276

An Analysis of Encoder Representations in Transformer-Based Machine Translation
Alessandro Raganato and Jorg Tiedemann. i, 287

Evaluating Grammaticality in Seq2seq Models with a Broad Coverage HPSG Grammar: A Case Study
on Machine Translation
Johnny Wei, Khiem Pham, Brendan O’Connor and Brian Dillon............................ 298

Context-Free Transductions with Neural Stacks
Yiding Hao, William Merrill, Dana Angluin, Robert Frank, Noah Amsel, Andrew Benz and Simon
MendelSONNo 306

Extended Abstracts

Learning Explanations from Language Data
David Harbecke, Robert Schwarzenberg and Christoph Alt 316

How much should you ask? On the question structure in QA systems.
Barbara Rychalska, Dominika Basaj, Anna Wréblewska and Przemyslaw Biecek 319

Does it care what you asked? Understanding Importance of Verbs in Deep Learning QA System
Barbara Rychalska, Dominika Basaj, Anna Wréblewska and Przemyslaw Biecek 322

Interpretable Textual Neuron Representations for NLP
Nina Poerner, Benjamin Roth and Hinrich Schiitze................o ... 325

Language Models Learn POS First
Naomi Saphra and Adam LOpez.o it e 328

Predicting and interpreting embeddings for out of vocabulary words in downstream tasks
Nicolas Garneau, Jean-Samuel Leboeuf and Luc Lamontagne 331

Probing sentence embeddings for structure-dependent tense
Geoff Bacon and Terry Regier e 334

Collecting Diverse Natural Language Inference Problems for Sentence Representation Evaluation
Adam Poliak, Aparajita Haldar, Rachel Rudinger, J. Edward Hu, Ellie Pavlick, Aaron Steven White
and Benjamin Van DUIMEo o e e e 337

Interpretable Word Embedding Contextualization
Kyoung-Rok Jang and Sung-Hyon Myaeng i 341

State Gradients for RNN Memory Analysis
Lyan Verwimp, Hugo Van hamme, Vincent Renkens and Patrick Wambacq.................. 344

Extracting Syntactic Trees from Transformer Encoder Self-Attentions
David Marecek and Rudolf Rosao e 347

Portable, layer-wise task performance monitoring for NLP models
TOM LIPPINCOtE. . ettt et e e et et e e e e e 350

X

GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy and Samuel Bowman. ..353

Explicitly modeling case improves neural dependency parsing
Clara Vania and Adam LOpezZttt e e 356

Language Modeling Teaches You More than Translation Does: Lessons Learned Through Auxiliary Syn-
tactic Task Analysis
Kelly Zhang and Samuel Bowman. i i 359

Representation of Word Meaning in the Intermediate Projection Layer of a Neural Language Model
Steven Derby, Paul Miller, Brian Murphy and Barry Devereux 362

Interpretable Structure Induction via Sparse Attention
Ben Peters, Vlad Niculae and André F. T. Martins. oottt 365

Debugging Sequence-to-Sequence Models with Seq2Seq-Vis
Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter Pfister and
Alexander RUSh e 368

Grammar Induction with Neural Language Models: An Unusual Replication
Phu Mon Htut, Kyunghyun Cho and Samuel Bowman..................... 371

Does Syntactic Knowledge in Multilingual Language Models Transfer Across Languages?
Prajit Dhar and Arianna BiSazzaoi it 374

Exploiting Attention to Reveal Shortcomings in Memory Models
Kaylee Burns, Aida Nematzadeh, Erin Grant, Alison Gopnik and Tom Griffiths.............. 378

End-to-end Image Captioning Exploits Distributional Similarity in Multimodal Space
Pranava Swaroop Madhyastha, Josiah Wang and Lucia Specia.............................. 381

Limitations in learning an interpreted language with recurrent models
Denis Paperno.o e 384

Conference Program

09:00-09:10 Opening Remarks
09:10-10:00 Invited Talk: Yoav Goldberg

10:00-11:00 Poster Session 1

When does deep multi-task learning work for loosely related document classification
tasks?
Emma Kerinec, Chloé Braud and Anders Sggaard

Analyzing Learned Representations of a Deep ASR Performance Prediction Model
Zied Elloumi, Laurent Besacier, Olivier Galibert and Benjamin Lecouteux

Learning Explanations from Language Data
David Harbecke, Robert Schwarzenberg and Christoph Alt

Nightmare at test time: How punctuation prevents parsers from generalizing
Anders Sggaard, Miryam de Lhoneux and Isabelle Augenstein

How much should you ask? On the question structure in QA systems.
Barbara Rychalska, Dominika Basaj, Anna Wréblewska and Przemyslaw Biecek

Does it care what you asked? Understanding Importance of Verbs in Deep Learning
QA System
Barbara Rychalska, Dominika Basaj, Anna Wréblewska and Przemyslaw Biecek

Interpretable Textual Neuron Representations for NLP
Nina Poerner, Benjamin Roth and Hinrich Schiitze

Evaluating Textual Representations through Image Generation
Graham Spinks and Marie-Francine Moens

On the Role of Text Preprocessing in Neural Network Architectures: An Evaluation
Study on Text Categorization and Sentiment Analysis

Jose Camacho-Collados and Mohammad Taher Pilehvar

Language Models Learn POS First
Naomi Saphra and Adam Lopez

Jump to better conclusions: SCAN both left and right
Joost Bastings, Marco Baroni, Jason Weston, Kyunghyun Cho and Douwe Kiela

X1

10:30-11:00

Linguistic representations in multi-task neural networks for ellipsis resolution
Ola Rgnning, Daniel Hardt and Anders Sggaard

Unsupervised Token-wise Alignment to Improve Interpretation of Encoder-Decoder
Models
Shun Kiyono, Sho Takase, Jun Suzuki, Naoaki Okazaki, Kentaro Inui and Masaaki
Nagata

Rule induction for global explanation of trained models
Madhumita Sushil, Simon Suster and Walter Daelemans

Predicting and interpreting embeddings for out of vocabulary words in downstream
tasks
Nicolas Garneau, Jean-Samuel Leboeuf and Luc Lamontagne

Can LSTM Learn to Capture Agreement? The Case of Basque
Shauli Ravfogel, Yoav Goldberg and Francis Tyers

Rearranging the Familiar: Testing Compositional Generalization in Recurrent Net-
works
Joao Loula, Marco Baroni and Brenden Lake

Probing sentence embeddings for structure-dependent tense
Geoff Bacon and Terry Regier

Evaluating the Ability of LSTMs to Learn Context-Free Grammars
Luzi Sennhauser and Robert Berwick

Collecting Diverse Natural Language Inference Problems for Sentence Representa-
tion Evaluation

Adam Poliak, Aparajita Haldar, Rachel Rudinger, J. Edward Hu, Ellie Pavlick,
Aaron Steven White and Benjamin Van Durme

Interpretable Neural Architectures for Attributing an Ad’s Performance to its Writ-
ing Style

Reid Pryzant, Sugato Basu and Kazoo Sone

Interpretable Word Embedding Contextualization
Kyoung-Rok Jang, Sung-Hyon Myaeng and Sang-Bum Kim

Interpreting Neural Networks with Nearest Neighbors
Eric Wallace, Shi Feng and Jordan Boyd-Graber

‘Indicatements’ that character language models learn English morpho-syntactic
units and regularities
Yova Kementchedjhieva and Adam Lopez

Coffee Break

xii

11:00-12:30

12:30-14:00

14:00-14:50

14:50-16:00

Oral Presentations
Interpretable Structure Induction via Sparse Attention

Ben Peters, Vlad Niculae and André F. T. Martins

Understanding Convolutional Neural Networks for Text Classification
Alon Jacovi, Oren Sar Shalom and Yoav Goldberg

Extracting Syntactic Trees from Transformer Encoder Self-Attentions
David Marecek and Rudolf Rosa

Context-Free Transductions with Neural Stacks
Yiding Hao, William Merrill, Dana Angluin, Robert Frank, Noah Amsel, Andrew
Benz and Simon Mendelsohn

Explaining non-linear Classifier Decisions within Kernel-based Deep Architectures
Danilo Croce, Daniele Rossini and Roberto Basili

Firearms and Tigers are Dangerous, Kitchen Knives and Zebras are Not: Testing
whether Word Embeddings Can Tell
Pia Sommerauer and Antske Fokkens

Lunch Break

Invited Talk: Graham Neubig

Poster Session 2

State Gradients for RNN Memory Analysis
Lyan Verwimp, Hugo Van hamme, Vincent Renkens and Patrick Wambacq

LISA: Explaining Recurrent Neural Network Judgments via Layer-wlse Semantic
Accumulation and Example to Pattern Transformation
Pankaj Gupta and Hinrich Schiitze

Analysing the potential of seq-to-seq models for incremental interpretation in task-
oriented dialogue

Dieuwke Hupkes, Sanne Bouwmeester and Raquel Fernadndez

An Operation Sequence Model for Explainable Neural Machine Translation
Felix Stahlberg, Danielle Saunders and Bill Byrne

Introspection for convolutional automatic speech recognition
Andreas Krug and Sebastian Stober

Xiii

Portable, layer-wise task performance monitoring for NLP models
Tom Lippincott

GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Un-
derstanding

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy and Samuel
Bowman

Explicitly modeling case improves neural dependency parsing
Clara Vania and Adam Lopez

Learning and Evaluating Sparse Interpretable Sentence Embeddings
Valentin Trifonov, Octavian-Eugen Ganea, Anna Potapenko and Thomas Hofmann

Language Modeling Teaches You More than Translation Does: Lessons Learned
Through Auxiliary Syntactic Task Analysis
Kelly Zhang and Samuel Bowman

Do Language Models Understand Anything? On the Ability of LSTMs to Under-
stand Negative Polarity Items
Jaap Jumelet and Dieuwke Hupkes

Representation of Word Meaning in the Intermediate Projection Layer of a Neural
Language Model
Steven Derby, Paul Miller, Brian Murphy and Barry Devereux

Closing Brackets with Recurrent Neural Networks
Natalia Skachkova, Thomas Trost and Dietrich Klakow

Iterative Recursive Attention Model for Interpretable Sequence Classification
Martin Tutek and Jan Snajder

Interpreting Word-Level Hidden State Behaviour of Character-Level LSTM Lan-
guage Models
Avery Hiebert, Cole Peterson, Alona Fyshe and Nishant Mehta

Debugging Sequence-to-Sequence Models with Seq2Seq-Vis
Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter
Pfister and Alexander Rush

Grammar Induction with Neural Language Models: An Unusual Replication
Phu Mon Htut, Kyunghyun Cho and Samuel Bowman

X1v

Importance of Self-Attention for Sentiment Analysis
Gaél Letarte, Frédérik Paradis, Philippe Giguere and Frangois Laviolette

Does Syntactic Knowledge in Multilingual Language Models Transfer Across Lan-
guages?
Prajit Dhar and Arianna Bisazza

Diagnosing Failures in Question Answering Tasks with Attention
Aida Nematzadeh, Kaylee Burns, Erin Grant and Tom Griffiths

An Analysis of Encoder Representations in Transformer-Based Machine Translation
Alessandro Raganato and Jorg Tiedemann

End-to-end Image Captioning Exploits Distributional Similarity in Multimodal
Space
Pranava Swaroop Madhyastha, Josiah Wang and Lucia Specia

Evaluating Grammaticality in Seq2seq Models with a Broad Coverage HPSG
Grammar: A Case Study on Machine Translation
Johnny Wei, Khiem Pham, Brendan O’Connor and Brian Dillon

Limitations in learning an interpreted language with recurrent models
Denis Paperno

16:00-16:50 Invited Talk: Leila Wehbe

16:50-17:20 Oral Presentations Session 2

What do RNN Language Models Learn about Filler—-Gap Dependencies?
Ethan Wilcox, Roger Levy, Takashi Morita and Richard Futrell

Under the Hood: Using Diagnostic Classifiers to Investigate and Improve how Lan-
guage Models Track Agreement Information

Mario Giulianelli, Jack Harding, Florian Mohnert, Dieuwke Hupkes and Willem
Zuidema

17:20-17:30 Best Paper Announcement and Closing Remarks

XV

Keynote Talk

Trying to Understand Recurrent Neural Networks for Language Processing.

Yoav Goldberg

Bar Ilan University

Abstract

Recurrent neural networks (RNNs), and in particular LSTM networks, emerge as very capable learners
for sequential data. Thus, my group started using them everywhere, achieving strong results on many
language understanding and modeling tasks. However, little is known about how RNNs represent
sequences, what they actually encode, and what they are capable representing. In this talk, I will
describe some attempts at trying to shed light on the inner-working of RNNs. Particularly, I plan to
describe at least two of the following: a method for comparing what is captured in vector
representations of sentences based on different encoders (Adi et al, ICLR 2017, and more generally the
notion of diagnostic classification), a framework for extracting a finite-state automata from trained
RNNs (Weiss et al, [ICML 2018), and a formal difference between the representation capacity of
different RNN variants (Weiss et al, ACL 2018).

Biography of the Speaker

Yoav Goldberg is a Senior Lecturer at Bar Ilan University’s Computer Science Department. Before that,
he was a Research Scientist at Google Research New York. He works on problems related to Natural
Language Processing and Machine Learning. In particular he is interested in syntactic parsing,
structured-prediction models, learning for greedy decoding algorithms, multilingual language
understanding, and cross domain learning. Lately, he is also interested in neural network based methods
for NLP. He recently published a book on the subject.

XVi

Keynote Talk

Learning with Latent Linguistic Structure

Graham Neubig

Carnegie Mellon University

Abstract

Neural networks provide a powerful tool to model language, but also depart from standard methods of
linguistic representation, which usually consist of discrete tag, tree, or graph structures. These structures
are useful for a number of reasons: they are more interpretable, and also can be useful in downstream
tasks. In this talk, I will discuss models that explicitly incorporate these structures as latent variables,
allowing for unsupervised or semi-supervised discovery of interpretable linguistic structure, with
applications to part-of-speech and morphological tagging, as well as syntactic and semantic parsing.

Biography of the Speaker

Graham Neubig is an assistant professor at the Language Technologies Intitute of Carnegie Mellon
University. His work focuses on natural language processing, specifically multi-lingual models that
work in many different languages, and natural language interfaces that allow humans to communicate
with computers in their own language. Much of this work relies on machine learning to create these
systems from data, and he is also active in developing methods and algorithms for machine learning
over natural language data. He publishes regularly in the top venues in natural language processing,
machine learning, and speech, and his work occasionally wins awards such as best papers at EMNLP,
EACL, and WNMT. He is also active in developing open-source software, and is the main developer of
the DyNet neural network toolkit.

Xvil

Keynote Talk

Language representations in human brains and artificial neural networks

Leila Wehbe

Carnegie Mellon University

Abstract

When studying language in the brain, it has become more common to image the brain of humans while
they process naturalistic language stimuli consisting of rich, natural text. To analyse the brain
representation of such complex stimuli, vector representations derived from various NLP methods are
extremely useful as a model of the information being processed in the brain. The recent deep learning
revolution has ignited a lot of interest in using artificial neural networks as a source of high dimensional
vector representation for modeling brain processes. However, these representations are hard to interpret
and the problem becomes increasingly difficult: how do we study complex brain activity — a black box
we want to understand — using hard-to-interpret artificial neural network representations — another black
box we want to understand? In this talk, I will summarize the recent effort in modeling the brain
processing of language, the use of artificial neural networks in this process, and how inferences about
brain processes and about artificial neural network representations can still be made under this setup.

Biography of the Speaker

Leila Wehbe is an assistant professor of Machine Learning at Carnegie Mellon University. Previously,
we was a postdoctoral researcher at the Gallant Lab in the Helen Wills Neuroscience Institute at UC
Berkeley. She obtained her PhD from the Machine Learning Department and the Center for the Neural
Basis of Cognition at Carnegie Mellon University, where she worked with Tom Mitchell. She works on
studying language representations in the brain when subjects engage in naturalistic language tasks.
Specifically, she combines functional neuroimaging with natural language processing and machine
learning tools to build spatiotemporal maps of the information represented in the brain during language
processing.

XViil

When does deep multi-task learning work for loosely related document
classification tasks?

Emma Kerinec
Ecole Normale Supérieure
de Lyon
Lyon, France
emma.kerinec@ens-1lyon.fr

Abstract

This work aims to contribute to our under-
standing of when multi-task learning through
parameter sharing in deep neural networks
leads to improvements over single-task learn-
ing. We focus on the setting of learning from
loosely related tasks, for which no theoretical
guarantees exist. We therefore approach the
question empirically, studying which proper-
ties of datasets and single-task learning char-
acteristics correlate with improvements from
multi-task learning. We are the first to study
this in a text classification setting and across
more than 500 different task pairs.

1 Introduction

Multi-task learning is a set of techniques for ex-
ploiting synergies between related tasks, and in
natural language processing (NLP), where there is
an overwhelming number of related problems, and
different ways to represent these problems, multi-
task learning seems well-motivated. Since multi-
task learning, by exploiting related tasks, also re-
duces the need for labeled data, multi-task learn-
ing is also often seen as a way to obtain more ro-
bust NLP for more domains and languages.
Multi-task learning has seen a revival in recent
years, amplified by the success of deep learning
techniques. Multi-task learning algorithms have
been proven to lead to better performance for sim-
ilar tasks, e.g., Baxter and others (2000), such as
models of individual patients in health care, but
recently multi-task learning has been applied to
more loosely related sets of tasks in artificial in-
telligence. Examples include machine translation
and syntactic parsing (Kaiser et al., 2017) or fixa-
tion prediction and sentence compression (Klerke,
Goldberg, and Sggaard, 2016). Reported results

This work was done, when the third author was affiliated
with Dpt. of Computer Science, University of Copenhagen.

Anders Sggaard
Dpt. of Computer Science
University of Copenhagen
soegaard@di.ku.dk

1

Chloé Braud*
Université de Lorraine,
CNRS, LORIA
Nancy, France
chloe.braud@loria.fr

have been promising, but in the case of loosely re-
lated tasks, often also with different label spaces,
we have no guarantees that multi-task learning
will work.

Recent studies have tried to study empirically
when multi-task learning leads to improvements
(Alonso and Plank, 2017; Bingel and Sggaard,
2017). These preliminary studies have argued —
Bingel and Sggaard (2017) most clearly — that
multi-task learning is particularly effective when
the target task otherwise plateaus faster than the
auxiliary task. This study compliments these stud-
ies, considering new tasks and architectures, and
our findings are largely supportive of this conclu-
sion. In text classification, however, performance
also depends crucially on the divergence between
the marginal distributions of words in the target
and auxiliary task.

Document classification comes in many differ-
ent flavors, including spam detection, sentiment
analysis, customer support ticket routing, and di-
agnosis support based on patient records, but in
this paper we focus on topic-level multi-way clas-
sification. We use the 20 Newsgroups dataset, a
corpus of newsgroup posts that are labeled by the
topics of the newsgroups. One key challenge in
document classification is the high number of fea-
ture dimensions introduced by n-gram features,
often outnumbering the number of document in-
stances in the training corpus. Specifically, it is
easy to overfit to the training corpus in high di-
mensions.

Multi-task learning (Caruana, 1993) has strong
regularization effects and can therefore potentially
make our models less prone to overfitting. Previ-
ous empirical meta-studies of multi-task learning
have focused on sequence tagging problems and
recurrent neural networks, but there is no guaran-
tee that results extend to document classification.
This work, which extends previous work on recur-

Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 1-8
Brussels, Belgium, November 1, 2018. (©2018 Association for Computational Linguistics

rent neural networks, is thus motivated by a) an
interest in whether previous findings generalize to
document classification algorithms — in our case,
multi-layered perceptrons, b) a practical consid-
eration that any recommendations coming out of a
study of document classification would be helpful
to a wider audience.

As already said, our focus on topic-level classi-
fication is motivated by the observation that this
is an extremely common problem, and key to
structuring content on websites, customer support
ticket routing, intelligent email, etc. Also, the 20
Newsgroups corpus uses a set of 20 labels that are
hierarchically organized (see Figure 1), which we
can exploit to extract a large set of task pairs.

The problem that we consider is the following:
If we have two topic-level classification datasets
that are loosely related — i.e, contrasts the same
upper level classes in the hierarchy in Figure 1 —
and we have run single-task experiments for each
of these, when does multi-task learning help, keep-
ing hyper-parameters fixed? We approach this as
a prediction problem, trying to predict gains or
losses based on meta features such as dataset char-
acteristics and features of the single-task learning
curves. This approach was first introduced in (Bin-
gel and Sggaard, 2017).

1.1 Contributions

Our contributions are as follows: a) We present
the first study of when multi-task learning works
in the context of document classification. b) This
is, to the best of our knowledge, also the first meta-
study that focuses on hard parameter sharing in
multilayered perceptrons, although this approach
to multi-task learning goes all the way back to
(Caruana, 1993). c) We find that many of the re-
sults obtained with other types of deep neural net-
works scale to our case, but also that distributional
divergence is strongly, negatively correlated with
performance gains; something not observed with
sequence tagging problems. Finally, we make all
our code available at [anonymized].

2 Related Work

Document classification has a very long history
and is one of the most fundamental applications
of machine learning. It is extremely important to
many industries, from customer support to medi-
cal diagnosis support.

The standard approach to document classifica-

tion is to represent documents by what is known as
bags of words, i.e., vector representations where
each dimension encodes the presence or relative
frequency of a particular n-gram (sequence of
words). In this work, we use TF-IDF scores and
only encode the presence of unigrams (words).
Each document is thus a |V'|-dimensional array of
floats, where |V| is the size of our vocabulary.

The dataset that we use, is 20 Newsgroups.' It
has been used in several comparisons of classifi-
cation algorithms (Dredze, Crammer, and Pereira,
2008; Crammer and Chechik, 2012), and some
of the best results have been achieved with ran-
dom forests and multi-layered perceptrons (deep
learning models). The dataset, however, is also
known to allow for over-fitting (Ribeiro, Singh,
and Guestrin, 2016). Such overfitting can be reme-
died by multi-task learning. In this paper, we focus
on multi-task learning with multi-layered percep-
trons.

Multi-task learning comes in many different
flavors, but most approaches can be cast as ways
of doing matrix regularization. To see this, con-
struct a m X n matrix for m models with n param-
eters. Multi-task learning corresponds to jointly
fitting the m models penalized by a regulariza-
tion term defined over this matrix. One common
approach to multi-task learning, for example, is
mean-constrained (o-regularization. The penalty
in this case is the sum of the /5-distances of the m
models to their mean.

In this paper, we focus on hard parameter shar-
ing, in which we jointly learn m multi-layered per-
ceptrons that share the parameters of their hidden
layers. This is also the kind of architecture dis-
cussed in (Collobert et al., 2011), one of the sem-
inal papers in multi-task learning for natural lan-
guage processing. See Ruder (2017) for a more
complete overview of multi-task learning algo-
rithms used in natural language processing.

Hard parameter sharing comes with several
guarantees when applied to closely related tasks
(Baxter and others, 2000), including a reduction
in Rademacher complexity (Maurer, 2006). These
guarantees, however, do not apply to our case of
more loosely related tasks. For example, (Baxter
and others, 2000) requires the tasks to have shared
optimal hypothesis classes; which does not have
to be the case in 20 Newsgroups.

'nttp://qwone.com/~jason/20Newsgroups/

e S

comp rec sci talk other

/N /N | /\ |
SYS others SPOrt vehicles sci politic religion other
I . | | |

a b c d e f g h
Figure 1: Hierarchical structure of 20 News-

groups, with a= ibm.pc.hardware, mac.hardware;
b= graphics, os.ms-windows.misc, windows.x; c=
baseball, hockey; d= autos, motorcycles; e= crypt,
electronics, med, space; f= misc, guns, mideast;
g= misc, atheism, christian, h= forsale.

3 Methodology

We begin with a brief summary of our method-
ology: We sample pairs of tasks from 20 News-
groups. The documents are represented as TF-IDF
vectors, and we train single-task and multi-task
multilayered perceptrons to predict topics from
such vectors. We then run meta-experiments using
logistic regression classifiers to predict the sign
of the relative difference between multi-task and
single-task performance, from features derived
from the data and the single-task runs. We are pri-
marily interested in the coefficients of the logistic
regression meta-models, which tell us what char-
acteristics of the data and the single-task experi-
ments are predictive of multi-task learning gains.

3.1 20 Newsgroups

The 20 Newsgroups data set is a collection of ap-
proximately 20,000 newsgroup documents, parti-
tioned across 20 different topics. It contains about
60,000 different words in total.

Some of the newsgroups are very closely re-
lated and can be seen as subtopics of the same
topic, while others are highly unrelated. The top-
ics can be represented as a 3-level hierarchy: The
first level partitions the set of topics into 5 classes
(e.g. comp, rec...), the second one into 8
subclasses (e.g. sys, others, sport...),
and at the leaf nodes we have the 20 topics
(e.g. ibm.pc.hardware, baseball...);
see Figure 1.

3.2 Classification tasks

Based on the 20 Newsgroups’ structure, we define
pairs of tasks in ways similar to previous studies
(Sggaard and Johannsen, 2012). We do this in two
different ways, leading to Problem 1 and 2, defined
below.

3.2.1 Problem 1 (RELATED TOPICS)

The main task is to distinguish between two topics
A and B (third level) that have the same ancestor at
the first level of the above hierarchy, i.e. they per-
tain to the same class, but to different subclasses.
An auxiliary task is to distinguish between two
topics C and D, with the following constraints: C
has the same father as A, and D the same as B.

A task pair example would be: A=baseball
and B=autos for the main task since;
C=hockey and D=motorcycles for the
auxiliary task (see 2). We obtained 52 unique
such pairs of main-auxiliary tasks for problem 1.

rec / \
T~

sport vehicles
Ve N e N
A=baseball C=hockey B=autos D=motorcycles

Figure 2: Problem 1 (Related topics): A and B are
the main tasks, C and D the auxiliary ones.

3.2.2 Problem 2 (UNRELATED TOPICS)

For the second problem, we keep the constraints
that C has the same father as A and D the same as B,
and that A and B have different fathers. However,
A and B are not forced to have the same ancestor
at the first level anymore. In this setting, the main
and auxiliary tasks could be about distinguishing
texts corresponding to unrelated topics, but they
still share topics pertaining to the same classes,
making multi-task learning a relevant framework.

An example of pairs of tasks would be:
A=guns and B=autos for the main task;
C=Mideast and D=motorcycles for the aux-
iliary task (see Figure 3).

/\

rec talk
VRN VRN
sport vehicles politic religion
| VRN VRN |
+ B=autos D=motorcycles A=guns C=mideast

Figure 3: Problem 2 (Unrelated topics):A and B are
the main tasks, C and D the auxiliary ones.

We obtained 516 different pairs of main-
auxiliary tasks for UNRELATED TOPICS.

Note that the instances (i.e. pairs of main-
auxiliary tasks) of RELATED TOPICS are included
in the set of instances of UNRELATED TOPICS.
We have many more instances for UNRELATED

Torics than for RELATED TOPICS, which means
that we have many more training points when try-
ing to predict the performance of multi-task learn-
ing.

3.3 Representation of the data

We use TF-IDF (term frequency-inverse document
frequency) over the bag-of-words to represent the
data. The TF-IDF value increases proportionally
to the number of times a word appears in a doc-
ument, but is offset by the frequency of the word
in the corpus, which helps to adjust for the fact
that some words appear more frequently in gen-
eral. This representation is known to be efficient
(Salton and Buckley, 1988; Aizawa, 2003); es-
pecially in the case of text classification (Zhang,
Yoshida, and Tang, 2011). We keep the 10,000
most frequent features, the frequency being com-
puted on the training data available for the entire
20 Newsgroups corpus.

3.4 Models

Both our single and multi-task learning architec-
tures consist of a multi-layered perceptron with
two hidden layers. In the case of multi-task
learning, those layers are shared across all tasks.
This setting is known as hard parameter shar-
ing. Hard parameter sharing was first intro-
duced by (Caruana, 1993) and used with success
for different tasks, for example in (Collobert et
al., 2011; Klerke, Goldberg, and Sggaard, 2016;
Plank, S¢gaard, and Goldberg, 2016). Hard pa-
rameter sharing greatly reduces the risk of overfit-
ting. In fact, Baxter and others (2000) showed that
the risk of overfitting the shared parameters is an
order n where n is the number of tasks smaller
than overfitting the task-specific parameters, i.e.
the output layers.

The input is thus a 10,000-dimensional TF-IDF
vector representation of the texts. A training step
consists of sampling a random batch of 32 in-
stances, i.e. texts (for both main and auxiliary task
in the case of multi-task learning) and minimizing
the binary cross-entropy loss using an Adam opti-
mizer (Kingma and Ba, 2014).

We tune the following hyper parameters of the
single-task architectures on a similar document
classification problem, using data from Amazon
reviews,” and, following (Bingel and Sggaard,

https://www.cs. jhu.edu/-mdredze/
datasets/sentiment/index2.html

2017), we apply the same hyper-parameter values
to multi-task learning: number of hidden layers
(2) and layer size (100). See §4.1 for number of
epochs (100).

3.5 Meta-analysis

We want to investigate whether we can predict
gains from multi-task learning given features of
the data sets and single-task learning character-
istics, as well as understand how gains correlate
with data set and single-task learning characteris-
tics. For each problem instance, we thus extract
several features from the datasets and the learning
curves of the single task models. These features
are similar to those used in (Bingel and Sggaard,
2017):

e Jensen-Shannon Divergence between the
(unigram) word distributions of the target and
auxiliary task training sets, as well as inter-
nally (between target and test data) for each
task,

e Gradients of the loss curve at 10, 25, 50 and
75 percent of a training of 150 epochs, for
each single-task, as well as the relative dif-
ferences in the learning curve gradients,

e Type-token ratios and out-of-vocabulary
rates in the target and auxiliary task training
sets, and their relative difference,

e Finally, we fit logarithmic functions to the
(log-like) loss curves, where the function is
of the form: a - In(c - i+ d) + b, and we in-
clude a and c as features. Both parameters
relate to the steepness of the loss curve, re-
flecting when training plateaus or comes with
diminishing returns.

In total, for each problem instance we have 30
features that we normalize to the [0,1] interval.
We use logistic regression to predict benefits or
detriments of multi-task learning setups based on
the features computed above.

4 Experiments

We run single-task and multi-task learning exper-
iments for all pairs of main and auxiliary tasks,
as described in Section 3.2. We then extract data
characteristics and features from the logs of the
single-task learning experiments. We train a meta-
learning model to predict gains from doing multi-
task learning over single-task performance using

JE——

@

(a) RELATED TOPICS (b) UNRELATED TOPICS

Figure 4: Mean F; over the number of epochs, for
single-task (crosses/blue) and multi-task learning
models (points/orange), for classification prob-
lems 1 and 2.

the above features. Then we build a final model to
predict gains from multi-task learning using these
pairs as instances. We use the 20 Newsgroups for
both RELATED ToPICS and UNRELATED TOP-
ICS, as explained above. We use 200 topics for
each class for training, and the rest of each dataset
for testing (5-700 data points, depending on the
topics).

4.1 Hyper-parameters

Hyper-parameters were tuned using the Amazon
data, as described in §3.4. Our models are trained
with two layers of size 100. The input is a
10,000 dimensional TF-IDF vector, and the out-
put is a probability distribution from a softmax
layer, whose predictions are evaluated using cross-
entropy loss.

Figures 4a and 4b plot the impact of the number
of epochs on the F; scores. This parameter was
not optimized on the Amazon data, but set such
that multi-task learning gains were reasonably bal-
anced.

In meta-learning, when predicting the gains
from multi-task learning, we use the mean perfor-
mance of 100 runs of randomized five-fold cross-
validation with logistic regression.

4.2 Evaluation

We train single-task models for all tasks, as well as
multi-task learning models for all combinations of
target and auxiliary tasks. We report the F; gains
obtained for multi-task learning over single-task
learning below.

Our real aim, however, is to try to predict the
gains one can get from doing multi-task learn-
ing. This is a meta-learning problem, and here,
the above experiments are our instances, i.e., one
instance for each of the main-auxiliary task pairs,

meaning that we have 52 instances for RELATED
Toprics and 516 for UNRELATED TOPICS. In or-
der to compensate for the small number of train-
ing instances, we repeat our RELATED TOPICS ex-
periments five times with random initializations,
and report means over the results. We use the
same procedure for UNRELATED TOPICS, also.
F; scores, obtained by a logistic regression model
over 100 runs using a 5-fold cross-validation pro-
cedure, are reported at the end of the next section.

5 Results

We first discuss the performance of our multi-task
learning models on the 20 NEWSGROUPS data,
and then present the results of our meta-learning
experiments.

5.1 Multi-task versus single-task learning

As mentioned above, we report averages over five
runs. The mean F) scores across all the prob-
lems, and five runs, are presented in Table 1. We
observe that on average, multi-task learning leads
to slight improvements over single-task learning.
This holds for both our problems, also for RE-
LATED TopPicS. The number of epochs needed
to train the multi-task models is slightly greater
than the one for the single-task ones (Figures 4a
and 4b), and the global stabilization occurs after
approximatively 75 epochs. We can also observed
that UNRELATED ToOPICS, where tasks to differ-
entiate are in general theoretically more different,
has better result than RELATED TOPICS (for both
single-task and multi-task learning) see Table 1.
For RELATED TOPICS, we see improvements in
more than 70% of the cases, and the mean gain is
about 5%. Figure 5a presents the relative gains
and losses over the different high-level classes of
the RELATED TOPICS problem. Note there is a lot
of variance. Some class pairs exhibit a lot of syn-
ergy, with gains doing multi-task learning, while
others seem relatively immune to multi-task learn-
ing. For UNRELATED TOPICS, multi-task learning
leads to improvements in about 57% of all cases.

5.2 Predicting gains from multi-task learning

In our meta-learning experiment, the objective
is to predict multi-task learning gains given the
dataset and single-task learning characteristics.
This is not only because it is of practical im-
portance to be able to predict whether multi-task
learning is worthwhile, when dealing with massive

‘Single-task Multi-task Improvements

0.834
0.893

RELATED
UNRELATED

0.843
0.897

0.719
0.572

Table 1: Mean Fj score for single-task and multi-task models, with average fraction of datasets with

improvements.

mb mh ab ah i

(a) “rec”: VEHICLES (motorcycles
and autos) vs. SPORTS (hockey and

baseball). (IBM, Mac).

gm wmi ow

(b) ’comp”: OTHERS (graphics, mis-
cellaneous, Windows) vs. SYSTEMS

mm ma mC gm ga gC Mm Ma MC

(c) "talk”: POLITICS (miscellaneous,
guns, Middle East) vs. RELIGION
(miscellaneous, atheism, Christian-

ity).

Figure 5: Relative F; gains from multi-task learning for Related Topics

datasets or thousands of tasks. More importantly,
our meta-learning models implicitly learn correla-
tions between such characteristics and gains, giv-
ing us insights as to when and why multi-task
learning works. If a dataset characteristic, for ex-
ample, is highly predictive of gains, this can either
be a feature that puts single-task learning at a dis-
advantage, or something that multi-task learning
can exploit.

The mean scores over 100 runs (5-fold CV) of
our logistic regression model for different feature
combinations are listed in Table 2. The results
show that generally, features extracted from the
loss curves are more predictive of gains than any
other features. This confirms findings in Bingel
and Sggaard (2017).

‘ RELATED TOPICS UNRELATED TOPICS

Using all features | 0.67 0.57
Not using curve features | 0.66 0.53
Only using curve features ‘ 0.71 0.58
Only using ratio features ‘ 0.69 0.57

Table 2: Mean performance across 100 runs of 5-
fold CV logistic regression.

6 Discussion

The mean score (inverse rank) of each predic-
tor is given in Table 4a; and the coefficients of
the predictors in Table 4b. The JSD features ei-

ther capture divergences between target and auxil-
iary tasks, in general, or between the classes, or
between target and auxiliary with respect to ei-
ther positive or negative class. Other features in-
clude the number of words in the training and test
set, their relative numbers, or the relative numbers
between target and auxiliary tasks (equivalent to
type-token ratios). Finally, the curve-related fea-
tures come in two flavors. One set is simply the
gradients of the loss curve at different time steps.
The other set is the parameters a and c from a log-
curve fitted to the entire loss curve.

6.1 Most predictive features

The most predictive features across both tasks are
Jensen-Shannon divergences, and the fitted loss
curve parameters a and c. OOV rate is also predic-
tive of gains, i.e., correlated with gains from multi-
task learning, which makes sense, since our em-
bedding parameters are updated during training,
leading to better representations for rare words
that occur more frequently in the auxiliary data.

Jensen-Shannon Divergence (JSD) We com-
pute JSD between training and test, in both tasks,
and their relative ratio, as well as between classes.
JSD between training and test is strongly nega-
tively correlated with gains from multi-task learn-
ing. In other words, the more divergence be-
tween your target and your auxiliary task, the
less likely multi-task learning is to work. The
importance of JSD is very interesting — and per-

Feature Data | Inverse rank Feature Data | Coefficient
JSD pos. class main 23 JSD pos. class all -0.93
Curve param a main 21 JSD neg. class all -0.88
JSD pos. class ratio 21 OOV rate all 0.81
Curve gradient 10% | main 20 JSD between classes | all 0.64
Curve gradient 10% | ratio 18 JSD between classes | aux 0.63
JSD between classes | aux 17 JSD between classes | main 0.58
words ratio 17 # words test -0.49
OOV rate all 17 # words train -0.47
Curve param c aux 16 Curve param a ratio 0.34
Curve gradient 50% | ratio 16 Curve param a aux -0.31
JSD neg. class aux 16 Curve gradient 75% | ratio 0.26
words main 15 Curve param ¢ ratio 0.24
Curve gradient 75% | main 14 # words aux -0.21
Curve gradient 25% | aux 14 Curve param c main -0.17
JSD between classes | ratio 14 Curve gradient 75% | main 0.17
Curve gradient 75% | ratio 14 # words main 0.13
JSD neg. class all 14 Curve gradient 50% | aux -0.11
Curve gradient 25% | ratio 13 Curve gradient 75% | aux 0.10
Curve gradient 50% | aux 12 JSD neg. class aux -0.08
Curve gradient 75% | aux 12 Curve gradient 50% | main -0.07
Curve param a aux 11 Curve param a main 0.07
Curve param a ratio 11 JSD pos. class aux 0.07
words test 11 Curve gradient 25% | aux -0.05
Curve gradient 50% | main 10 Curve gradient 10% | ratio 0.04
Curve param c ratio 10 Curve gradient 25% | ratio 0.04
JSD pos. class all 10 Curve gradient 25% | main 0.03
Curve param c main 9 Curve gradient 50% | ratio -0.03
words aux 9 Curve gradient 10% | aux -0.02
Curve gradient 10% | aux 9 Curve param c aux -0.02
Curve gradient 25% | main 8 Curve gradient 10% | main 0.01

(a) Inverse ranks for RELATED TOPICS

(b) Coefficients for UNRELATED TOPICS

Table 3: Average inverse ranks and average logistic regression coefficients of various predictors of gains

from multi-task learning

haps a bit surprising in the light of recent results
for sequence tagging (Alonso and Plank, 2017;
Bingel and Sggaard, 2017). These recent results
suggested that JSD is not predictive of multi-task
learning performance at all. Of course, JSD over
unigram occurrences is more closely related to the
model bias arising when training document clas-
sification models on loosely related tasks, than
to the model bias in sequence models. After all,
transition probabilities are typically at least as im-
portant as emission probabilities in statistical se-
quence tagging models.

Loss curve gradients were shown in (Bingel
and Sggaard, 2017) to be the best predictors of

multi-task learning gains. The intuition offered
there is that multi-task learning is more likely to
work when the target task quickly plateaus, but the
auxiliary task keeps pounding, eventually letting
the target task out of a potentially suboptimal local
optimum. Multi-task learning leads to a smoother
loss landscape, where it is harder to get trapped,
and when randomly sampling from the auxiliary
task, also, there is ample chance to be led out of
poor, local optima. Note that in our experiments
the good predictors based on loss curve gradients
are found in the last regions of the curve, just be-
fore early stopping.

Stability Some features are highly correlated,
which can produce instability — and poor results
and misleading coefficients — when training logis-
tic regression models. Note, however, that we re-
port averages over multiple models. This is sim-
ilar to the idea of using stability selection (Mein-
shausen and Biihlmann, 2010), though averaging
over multiple problems is arguably more robust
than doing it over bootstrap samples with replace-
ment.

7 Conclusion

We have investigated the performance of single-
task and multi-task multi layer perceptrons for text
classification using a TF-IDF representation of
documents. We ran experiments on the 20 News-
groups corpus and took advantage of the class hi-
erarchy in this dataset, to extract hundreds of pairs
of loosely related documents, for which no theo-
retical guarantees exist.

Based on this data, we conduct meta-learning
experiments, trying to predict when multi-task
learning works, and when it does not. We in-
spect the coefficients of such meta models to es-
timate the contribution of various dataset features
or learning characteristics to such gains. Our ex-
periments show the importance of loss curve gra-
dients and out-of-vocabulary rates, supporting re-
cent findings from sequence tagging (Bingel and
S@gaard, 2017), but we also see that biases in the
marginal distribution of the data, as measured by
JSD, are predictive of multi-task learning gains in
document classification.

References

Aizawa, A. 2003. An information-theoretic perspec-
tive of tfidf measures. Information Processing and
Management.

Alonso, H. M., and Plank, B. 2017. When is multitask
learning effective? semantic sequence prediction un-
der varying data conditions. In EACL.

Baxter, J., et al. 2000. A model of inductive bias
learning. Journal of Artificial Intelligence Research
(JAIR) 12:3.

Bingel, J., and Sggaard, A. 2017. Identifying bene-
ficial task relations for multi-task learning in deep
neural networks. In FACL.

Caruana, R. 1993. Multitask learning: a knowledge-
based source of inductive bias. In ICML.

Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural lan-
guage processing (almost) from scratch. The Jour-
nal of Machine Learning Research 12:2493-2537.

Crammer, K., and Chechik, G. 2012. Adaptive regu-
larization of weight matrices. In ICML.

Dredze, M.; Crammer, K.; and Pereira, F. 2008.
Confidence-weighted linear classification. In ICML.

Kaiser, L.; Gomez, A.; Shazeer, N.; Vaswani,
A.; Parmar, N.; Jones, L.; and Uszkoreit, J.
2017. One model to learn them all. In
https://arxiv.org/abs/1706.05137.

Kingma, D. P, and Ba, J. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Klerke, S.; Goldberg, Y.; and Sggaard, A. 2016. Im-
proving sentence compression by learning to predict
gaze. In NAACL.

Maurer, A. 2006. Bounds for linear multi-task learn-
ing. Journal of Machine Learning Research 6:117—
139.

Meinshausen, N., and Biithlmann, P. 2010. Stability
selection. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 72(4):417-473.

Plank, B.; Sggaard, A.; and Goldberg, Y. 2016. Mul-
tilingual part-of-speech tagging with bidirectional
long short-term memory models and auxiliary loss.
In ACL.

Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. Why
should I trust you - explaining the predictions of any
classifier. In NAACL.

Ruder, S. 2017. An overview of multi-task learning in
deep neural networks. CoRR.

Salton, G., and Buckley, C. 1988. Term-weighting
approaches in automatic text retrieval. Information
Processing and Management.

Se@gaard, A., and Johannsen, A. 2012. Robust learn-
ing in random subspaces: equipping NLP for OOV
effects. In COLING.

Zhang, W.; Yoshida, T.; and Tang, X. 2011. A com-
parative study of tf*idf, Isi and multi-words for text
classification. Expert Systems with Applications.

Analyzing Learned Representations of a Deep ASR Performance
Prediction Model

Zied Elloumi'? Laurent Besacier?

Olivier Galibert! Benjamin Lecouteux>

Laboratoire national de métrologie et d’essais (LNE) , France
2Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
firstname.name@lne.fr
firstname.name@univ—-grenoble—alpes.fr

Abstract

This paper addresses a relatively new task:
prediction of ASR performance on unseen
broadcast programs. In a previous paper, we
presented an ASR performance prediction sys-
tem using CNNs that encode both text (ASR
transcript) and speech, in order to predict word
error rate. This work is dedicated to the anal-
ysis of speech signal embeddings and text em-
beddings learnt by the CNN while training our
prediction model. We try to better understand
which information is captured by the deep
model and its relation with different condition-
ing factors. It is shown that hidden layers con-
vey a clear signal about speech style, accent
and broadcast type. We then try to leverage
these 3 types of information at training time
through multi-task learning. Our experiments
show that this allows to train slightly more ef-
ficient ASR performance prediction systems
that - in addition - simultaneously tag the an-
alyzed utterances according to their speech
style, accent and broadcast program origin.

1 Introduction

Predicting automatic speech recognition (ASR)
performance on unseen speech recordings is an
important Grail of speech research. In a previ-
ous paper (Elloumi et al., 2018), we presented
a framework for modeling and evaluating ASR
performance prediction on unseen broadcast pro-
grams. CNNs were very efficient encoding both
text (ASR transcript) and speech to predict ASR
word error rate (WER). However, while achiev-
ing state-of-the-art performance prediction results,
our CNN approach is more difficult to understand
compared to conventional approaches based on
engineered features such as TransRater' for in-
stance. This lack of interpretability of the repre-
sentations learned by deep neural networks is a

"https://github.com/hlt-mt/TranscRater

9

general problem in Al. Recent papers started to
address this issue and analyzed hidden represen-
tations learned during training of different natu-
ral language processing models (Mohamed et al.,
2012; Wu and King, 2016; Belinkov and Glass,
2017; Shi et al., 2016; Belinkov et al., 2017; Wang
et al., 2017).

Contribution. This work is dedicated to the
analysis of speech signal embeddings and text em-
beddings learnt by the CNN during training of
our ASR performance prediction model. Our goal
is to better understand which information is cap-
tured by the deep model and its relation with con-
ditioning factors such as speech style, accent or
broadcast program type. For this, we use a data
set presented in (Elloumi et al., 2018) which con-
tains a large amount of speech utterances taken
from various collections of French broadcast pro-
grams. Following a methodology similar to (Be-
linkov and Glass, 2017), our deep performance
prediction model is used to generate utterance
level features that are given to a shallow classifier
trained to solve secondary classification tasks. It
is shown that hidden layers convey a clear signal
about speech style, accent and show. We then try
to leverage these 3 types of information at training
time through multi-task learning. Our experiments
show that this allows to train slightly more effi-
cient ASR performance prediction systems that -
in addition - simultaneously tag the analyzed utter-
ances according to their speech style, accent and
broadcast program origin.

Outline. The paper is organized as follows. In
section 2, we present a brief overview of related
works and present our ASR performance predic-
tion system in section 3. Then, we detail our
methodology to evaluate learned representations
in section 4. Our multi-task learning experiments
for ASR performance prediction are presented in
section 5. Finally, section 6 concludes this work.

Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 9-15
Brussels, Belgium, November 1, 2018. (©2018 Association for Computational Linguistics

2 Related works

Several works tried to understand learned rep-
resentations for NLP tasks such as Automatic
Speech Recognition (ASR) and Neural Machine
Translation (NMT).

(Shi et al., 2016) and (Belinkov et al., 2017)
tried to better understand the hidden represen-
tations of NMT models which were given to a
shallow classifier in order to predict syntactic la-
bels (Shi et al., 2016), part-of-speech labels or
semantic ones (Belinkov et al., 2017). It was
shown that lower layers are better at POS tag-
ging, while higher layers are better at learning
semantics. (Mohamed et al., 2012) and (Be-
linkov and Glass, 2017) analyzed the feature rep-
resentations from a deep ASR model using t-
SNE visualization (Maaten and Hinton, 2008) and
tried to understand which layers better capture
the phonemic information by training a shallow
phone classifier. Also relevant is the work of
(Wang et al., 2017) who proposed an in-depth in-
vestigation on three kinds of speaker embeddings
learned for a speaker recognition task, i.e. i-vector,
d-vector and RNN/LSTM based sequence-vector
(s-vector). Classification tasks were designed
to facilitate better understanding of the encoded
speaker representations. Multi-task learning was
also proposed to integrate different speaker em-
beddings and improve speaker verification perfor-
mance.

3 ASR performance prediction system

In (Elloumi et al., 2018), we proposed a new ap-
proach using convolution neural networks (CNNs)
to predict ASR performance from a collection of
heterogeneous broadcast programs (both radio and
TV). We particularly focused on the combina-
tion of text (ASR transcription) and signal (raw
speech) inputs which both proved useful for CNN
prediction. We also observed that our system re-
markably predicts WER distribution on a collec-
tion of speech recordings.

To obtain speech transcripts (ASR outputs) for
the prediction model, we built our own French
ASR system based on the KALDI toolkit (Povey
et al., 2011). A hybrid HMM-DNN system was
trained using 100 hours of broadcast news from
Quaero®, ETAPE (Gravier et al., 2012), ESTER 1
& ESTER 2 (Galliano et al., 2005) and REPERE

Zhttp://www.quaero.org

10

(Kahn et al., 2012) collections. ASR performance
was evaluated on the held out corpora presented
in table 2 (used to train and evaluate ASR predic-
tion) and its averaged value was 22.29% on the
TRAIN set, 22.35% on the DEV set and 31.20%
on the TEST set (which contains more challenging
broadcast programs).

Figure 1 shows our network architecture. The
network input can be either a pure text in-
put, a pure signal input (raw signal) or a dual
(text+speech) input. To avoid memory issues, sig-
nals are downsampled to 8khz and models are
trained on six-second speech turns (shorter speech
turns are padded with zeros). For text input, the
architecture is inspired from (Kim, 2014) (green
in Figure 1): the input is a matrix of dimen-
sions 296x100 (296 is the longest ASR hypothe-
sis length in our corpus ; 100 is the dimension of
pre-trained word embeddings on a large held out
text corpus of 3.3G words). For speech input, we
use the best architecture (m/8) proposed in (Dai
et al., 2017) (colored in red in Figure 1) of dimen-
sions 48000 x 1 (48000 samples correspond to 6s
of speech).

For WER prediction, our best approach (called
CNNo ftmaz) used softmax probabilities and an
external fixed WERy ¢4, Which corresponds to
a discretization of the WER output space (see
(Elloumi et al., 2018) for more details). The
best performance obtained is 19.24% MAE? using
text+speech input. Our ASR prediction system is
built using both Keras (Chollet et al., 2015) and
Tensorflow*.

In the next section, we analyze the represen-
tations learnt in the higher layers (3 blocks col-
ored in yellow and dotted in Figure 1) for pure
text (TXT), pure speech (RAW-SIG) and both
(TXT+RAW-SIG).

4 Evaluating learned representations

4.1 Methodology

In this section, we attempt to understand what our
best ASR performance prediction system (Elloumi
et al., 2018) learned. We analyze the text and
speech representations obtained by our architec-
ture. Alike (Belinkov and Glass, 2017), the joint
text+speech model is used to generate utterance

3Mean Absolute Error (MAE) is a common metric to eval-
uate WER prediction ; it computes the absolute deviation be-
tween the true and predicted WERS, averaged over the num-

ber of utterances in the test set.
*https://www.tensorflow.org

CNN with textual input

EMBED
Conv MAX
1D pooling
Y L 1L 1

Global
Average
Pooling

FC 256

WER pred Softmax

C 1,3,5,7,9],256) : tput = 1x256x5
input: 296x100 onv: [[1,256] Maxpool : 4x1 output = 1x256x!
CNN with signal input
¢4 e4 ¢4 (2
RAW-SIG Cony Conv | [averag
D[Max Max D[Max 1D | Max 1D oolin
Pooling Pooling Pooling IPoolin,

Maxpool : 4x1 * Maxpool :4x1 "~ ‘Maxpool : 41 Maxpool : 4x1
L L L L il '

RAW-SIG: 48000x1

[E—
Conv: output =
RSx4 BER2

Conv Conv Conv Conv
[80/4,64] [3.64]x4 [3.128] x4 [3,256] x 4

Compute WER

FC 256

Figure 1: Architecture of our CNN with text (green) and signal (red) inputs for WER prediction

level features (hidden representations of speech
turns colored in yellow in Figure 1) that are given
to a shallow classifier trained to solve secondary
classification tasks such as:

e STYLE: classify the utterances between
(spontaneous and non spontaneous) styles
(see table 1),

o ACCENT: classify the utterances between
native and non native speech (see also table
1, we used the speaker annotations provided
with our datasets in order to label our utter-
ances in native/non native speech),

SHOW: classify the utterances in different
broadcast programs (as described in table 2,
each utterance of our corpus is labeled with a
broadcast program name).

As a more visual analysis, we also plot an ex-
ample of hidden representations projected to a 2-D
space using t-distributed Stochastic Neighbor Em-
bedding (t-SNE) (Maaten and Hinton, 2008).°

4.2 Shallow classifiers

We built three shallow classifiers (SHOW,
STYLE, ACCENT) with a similar architecture.
The classifier is a feed-forward neural network
with one hidden layer (size of the hidden layer
is set to 128) followed by dropout (rate of 0.5)
and a ReLU non-linearity. Finally, a softmax
layer is used for mapping onto the label set size.
We chose this simple formulation as we are inter-
ested in evaluating the quality of the representa-
tions learned by our ASR prediction model, rather
than optimizing the secondary classification tasks.

‘https://lvdmaaten.github.io/tsne/
code/tsne_python.zip

11

The network input size depends on which layer
to analyze (see figure 1). Training is performed
using Adam (Kingma and Ba, 2014) (using de-
fault parameters) over shuffled mini-batches in or-
der to minimize the cross-entropy loss. The mod-
els are trained for 30 epochs with a batch size of
16 speech utterances. After training, we keep the
model with the best performance on DEV set and
report its performance on the TEST set. The clas-
sifier outputs are evaluated in terms of accuracy.

4.3 Data

A data set from (Elloumi et al., 2018) was em-
ployed in our experiments, divided into three sub-
sets: training (TRAIN), development (DEV) and
test (TEST). Speech utterances come from vari-
ous French broadcast collections gathered during
projects or shared tasks: Quaero, ETAPE, ESTER
1 & ESTER 2 and REPERE.

The TEST set contains unseen broadcast pro-
grams that are different from those present in
TRAIN and DEV (Elloumi et al., 2018).

Category TRAIN DEV TEST
Non Spontaneous 54250 6101 3109
Spontaneous 13277 1403 3728
Native 44487 4945 5298
Non Native 23040 2559 1539

Table 1: Distribution of our utterances between

non spontaneous and spontaneous styles, native
and non native accents

Tables 1 and 2 show the whole data set in terms
of speech turns available for each classification
task. We clearly see that the data is unbalanced for
the three categories (STYLE, ACCENT, SHOW).
Since we are interested in evaluating the discrim-
inative power of our learned representations for

Show TRAIN DEV
FINTER-DEBATE 7632 833
FRANCE3-DEBATE 928 77
LCP-PileEtFace 4487 525
RFI 25565 2831
RTM 24198 2745
TELSONNE 4717 493
Total 67527 7504

Table 2: Number of utterances for each broadcast
program

these 3 tasks, we extracted a balanced version of
our TRAIN/DEV/TEST sets by filtering among
over-represented labels (final number of kept ut-
terances corresponds to bold numbers in table 1
and 2). Table 3 shows the distribution of our final
balanced TRAIN/DEV/TEST sets as well as the
number of categories for each task.®

Turns of speech per category

#Catg TRAIN DEV TEST
SHOW 5 4487, 493.; :
STYLE 2 13277y 1403xs 310945
ACCENT 2 23040xs 25595 15395

Table 3: Description of our balanced data set for
each category

4.4 Results

For each classification task, we build a shallow
classifier using the hidden representations of 7XT,
RAW-SIG and TXT+RAW-SIG blocks as input.
The experimental results are presented in table 4
for both DEV and TEST sets separated by two ver-
tical bars (|]).

Classification performance is all above a ran-
dom baseline accuracy (>50% for STYLE and
ACCENT and >20% for SHOW). This shows
that training a deep WER prediction system gives
representation layers that contain a meaningful
amount of information about speech style, speech
accent and broadcast program label. Predicting
utterance style (spontaneous/non spontaneous) is
slightly easier than predicting accent (native/non
native) especially from text input. One expla-
nation might be that speech utterances are short
(< 6s) while accent identification needs proba-
bly longer sequences. We also observe that us-
ing both text and speech improves the learned
representations for the STYLE task while it is

®For the SHOW classification task, the FRANCES3-
DEBATE shows were finally removed since they represent a
too small amount of speech turns.

12

less clear for the ACCENT task (for which im-
provement seen on DEV is not confirmed on
TEST). Finally, text input is significantly better
than speech input whereas we could have expected
better performance from speech for the SHOW
task (speech signals convey information about the
audio characteristics of a broadcast program). It
means that text input contains correlated infor-
mation with broadcast-program type, speech style
and speaker’s accent. In case of SHOW task,
our performance prediction system is able to cap-
ture information (vocabulary, topic, syntax, etc.)
about a specific broadcast program type, based on
textual features and to differ it from others (ra-
dio programs, TV debate programs, phone calls,
broadcast news programs, etc.). Likewise, the
textual information captured is very different be-
tween spontaneous/non-spontaneous speech styles
and native/non-native speaker’s accents.

Among the representations analyzed, the out-
puts of the CNNs (A1,B1) lead to the best classifi-
cation results, in line with previous findings about
convolutions as feature extractors. Performance
then drops using the higher (fully connected) lay-
ers that do not generate better representations for
detecting style, accent or show.

Layer Dim. SHOW STYLE ACCENT
TXT
Al 1280 57.12|- 80.72/|68.99 70.75||66.54
A2 256 54.89||- 80.01/|69.56 69.30||69.43
A3 128 51.04||- 79.23||68.27 68.25||70.89
RAW-SIG
B1 512 42.35||- 72.92(/58.64 64.60|55.85
B2 512 41.22||- 72.20(|58.41 64.44||54.84
B3 256 41.22||- 72.38(|58.44 64.50||54.65
B4 128 40.77||- 72.38]|58.52 64.74||54.87
TXT + RAW-SIG

Cl a3+B9 256 57.04||- 81.29(|70.36 71.41||65.98
C2 128 53.06]|- 79.62||70.55 70.01||65.20
Random - 20.00 50.00 50.00

Table 4: Show/Style/Accent classification accu-
racies using representations from different layers
learned during the training of our ASR WER pre-
diction system.

We visualize an example of utterance represen-
tations from C2(TXT+RAW-SIG) layer in figure
2 using the t-SNE. For a fixed utterance dura-
tion 4s<D<5s (716 speech turns) and 5s<D<6s
(489 speech turns), non spontaneous utterances are
plotted in blue while spontaneous ones are in pink.
The C2 layer produces clusters which shows that
spontaneous utterances are in the upper-left part

(a) 4s<D<5s (b) 5s<D<6s

Figure 2: Visualization of utterance representations
from C2 layer for different speech styles (S spon-
taneous - NS non spontaneous) - (a) utt. length is
4s<D<5s and (b) 5s<D<6s

of the 2D space. This suggests that C2 hidden rep-
resentation captures a weak signal about speaking
style.

Finally, figure 3 is the confusion matrix pro-
duced using C2(TXT+RAW-SIG) layer. The clas-
sifiers very well predicted TELSONNE category
(Accuracy of 82%), which contains many phone
calls from the radio listeners. This show is rather
different from the 4 other shows in DEV (broad-
cast debates and news).

Confusion matrix, with Accuracy

LCP-PileEtFace

RTM-ELDA 4

RFI

Label REF

TELSONNE -

FINTER-DEBATE - 0.17

&
o
&
§

2
qué
<& Y

&

&

Figure 3: Confusion matrix for SHOW classifi-
cation using C2(TXT+RAW-SIG) layer as input,

evaluated on DEV

S Multi-task learning

We have seen in the previous section that, while
training an ASR performance prediction system,
hidden layers convey a clear signal about speech
style, accent and show. This suggests that these
3 types of information might be useful to struc-
ture the deep ASR performance prediction models.
In this section, we investigate the effect of knowl-

13

edge of these labels (style, accent, show) at train-
ing time on prediction systems qualities. For this,
we perform multi-task learning providing the ad-
ditional information about broadcast type, speech
style and speaker’s accent during training. The ar-
chitecture of the multi-task model is similar to the
single-task WER prediction model of Figure 1 but
we add additional outputs: a softmax function
is added for each new classification task after the
last fully connected layer (C2). The output dimen-
sion depends on the task: 6 for SHOW and 2 for
STYLE and ACCENT tasks.

We use the full (unbalanced) data set described
in tables 1 and 2. Training of the multitask model
uses Adadelta update rule and all parameters are
initialized from scratch (8.70M). Models are per-
formed for 50 epochs with batch size of 32. MAE
is used as the loss function for WER prediction
task while cross-entropy loss is used for the clas-
sification tasks.

In the composite (multitask) loss, we assign a
weight of 1 for MAE loss (main task) and a smaller
weight of 0.3 (tuned using a grid search on DEV
dataset) for cross-entropy (secondary classifica-
tion task) loss(es).

After training, we take the model that lead to the
best MAE on DEV set and report its performance
on TEST. We build several models that simulta-
neously address 1, 2, 3 and 4 tasks. The mod-
els are evaluated with a specific metric for each
task: MAE & Kendall” for WER prediction task
and Accuracy for classification tasks.

Table 5 summarizes the experimental results on
DEV and TEST sets, separated by two vertical
bars (||). We considered the mono-task model de-
scribed in (Elloumi et al., 2018) (and summarized
in section 3) as a baseline system.

We recall that we evaluated the SHOW classifi-
cation task only on the DEV set (TEST broadcast
programs are new and were unseen in the TRAIN).

First of all, we notice that performance of classi-
fication tasks in muti-task scenarios are very good:
we are able to train efficient ASR performance
prediction systems that simultaneously tag the an-
alyzed utterances according to their speech style,
accent and broadcast program origin. Such multi-
task systems might be useful diagnostic tools to
analyze and predict ASR on large speech collec-
tions. Moreover, our best multi-task systems dis-

"Correlation between true ASR values and predicted ASR
values

Performance prediction task

Classification tasks

Models MAE Kendall SHOW STYLE ACCENT
Baseline: Mono-task

WER (Elloumi et al., 2018) 1524|1924 45.00/(46.83 - i ;
2-task

WER SHOW 14.83([19.15 47.25([47.05 99.29]- ; i

WER STYLE 15.07][19.66 45.92||45.49 - 99.01||65.24]

WER ACCENT 15.05/19.60 46.17]|45.60] h 91.72(75.30
3-task

WER STYLE ACCENT 1512|2023 45.75)|44.09 - 98.63((69.07 88.99|| 77.46

WER SHOW ACCENT 1494|1976 46.19||43.61 98.38]|- - 89.87|[71.44

WER SHOW STYLE 14.90/|19.14 45.87|47.28 99.12|- 99.47||81.98 h
4-task

WER SHOW STYLE ACCENT 15.15)/19.64 45.59[45.42 99.04|- 99.29||81.55 91.92||73.60

WER ALL COMBINED OUTPUTS _ 14.50 |[18.87 _ 43.16]48.63 - - -

Table 5: Evaluation of ASR performance prediction with multi-tasks models (DEV||T'EST) computed
with MAE and Kendall - secondary classification tasks accuracy is also reported

play a better performance (MAE, Kendall) than
the baseline system, which means that the implicit
information given about style, accent and broad-
cast program type can be helpful to structure the
system’s predictions. For example, in 2-task case,
the best model is obtained on WER+SHOW tasks
with a difference of +0.41%, +2.25% for MAE and
Kendall respectively (on DEV) compared to the
baseline on WER prediction task. However, it is
also important to mention that the impact of multi-
task learning on the main task (ASR performance
prediction) is limited: only slight improvements
on the test set are observed for MAE and Kendall
metrics. Anyway, the systems trained seem com-
plementary since their combination (averaging,
over all multi-task systems, predicted WERs at ut-
terance level) leads to significant performance im-
provement (MAE and Kendall).

6 Conclusion

This paper presented an analysis of learned repre-
sentations of our deep ASR performance predic-
tion system. Experiments show that hidden layers
convey a clear signal about speech style, accent,
and broadcast type. We also proposed a multi-task
learning approach to simultaneously predict WER
and classify utterances according to style, accent
and broadcast program origin.

References

Yonatan Belinkov and James Glass. 2017. Analyz-
ing hidden representations in end-to-end automatic
speech recognition systems. In Advances in Neural
Information Processing Systems, pages 2438-2448.

Yonatan Belinkov, Lluis Marquez, Hassan Sajjad,

14

Nadir Durrani, Fahim Dalvi, and James Glass. 2017.
Evaluating layers of representation in neural ma-
chine translation on part-of-speech and semantic
tagging tasks. In Proceedings of the Eighth Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), volume 1, pages
1-10.

Francois Chollet et al. 2015. Keras.
github.com/fchollet/keras.

https://

Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and
Samarjit Das. 2017. Very deep convolutional neural
networks for raw waveforms. In Acoustics, Speech
and Signal Processing (ICASSP), 2017 IEEE Inter-
national Conference on, pages 421-425. IEEE.

Zied Elloumi, Laurent Besacier, Olivier Galibert, Juli-
ette Kahn, and Benjamin Lecouteux. 2018. Asr per-
formance prediction on unseen broadcast programs
using convolutional neural networks. In IEEFE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP).

Sylvain Galliano, Edouard Geoffrois, Djamel Mostefa,
Khalid Choukri, Jean-Frangois Bonastre, and Guil-
laume Gravier. 2005. The ester phase ii evaluation
campaign for the rich transcription of french broad-
cast news. In Interspeech, pages 1149-1152.

Guillaume Gravier, Gilles Adda, Niklas Paulson,
Matthieu Carré, Aude Giraudel, and Olivier Galib-
ert. 2012. The etape corpus for the evaluation of
speech-based tv content processing in the french lan-
guage. In LREC-Eighth international conference on
Language Resources and Evaluation, page na.

Juliette Kahn, Olivier Galibert, Ludovic Quintard,
Matthieu Carré, Aude Giraudel, and Philippe Joly.
2012. A presentation of the repere challenge. In
Content-Based Multimedia Indexing (CBMI), 2012
10th International Workshop on, pages 1-6. IEEE.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579-2605.

Abdel-rahman Mohamed, Geoffrey Hinton, and Ger-
ald Penn. 2012. Understanding how deep belief
networks perform acoustic modelling. In Acous-
tics, Speech and Signal Processing (ICASSP), 2012
IEEE International Conference on, pages 4273—
4276. IEEE.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, et al. 2011. The kaldi speech recog-
nition toolkit. In IEEE 2011 workshop on auto-
matic speech recognition and understanding, EPFL-
CONF-192584. IEEE Signal Processing Society.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
string-based neural mt learn source syntax? In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1526—
1534.

Shuai Wang, Yanmin Qian, and Kai Yu. 2017. What
does the speaker embedding encode? In Inter-
speech, volume 2017, pages 1497-1501.

Zhizheng Wu and Simon King. 2016. Investigating
gated recurrent neural networks for speech synthe-
sis. CoRR, abs/1601.02539.

15

Explaining non-linear Classifier Decisions
within Kernel-based Deep Architectures

Danilo Croce and Daniele Rossini and Roberto Basili
Department of Enterprise Engineering
University of Roma, Tor Vergata
{croce,basili}@info.uniroma2.it

Abstract

Nonlinear methods such as deep neural net-
works achieve state-of-the-art performances in
several semantic NLP tasks. However episte-
mologically transparent decisions are not pro-
vided as for the limited interpretability of the
underlying acquired neural models. In neural-
based semantic inference tasks epistemologi-
cal transparency corresponds to the ability of
tracing back causal connections between the
linguistic properties of a input instance and the
produced classification output.

In this paper, we propose the use of a method-
ology, called Layerwise Relevance Propaga-
tion, over linguistically motivated neural ar-
chitectures, namely Kernel-based Deep Archi-
tectures (K D A), to guide argumentations and
explanation inferences. In such a way, each
decision provided by a KDA can be linked to
real examples, linguistically related to the in-
put instance: these can be used to motivate the
network output. Quantitative analysis shows
that richer explanations about the semantic and
syntagmatic structures of the examples charac-
terize more convincing arguments in two tasks,
i.e. question classification and semantic role
labeling.

1 Introduction

Nonlinear methods such as deep neural networks
achieve state-of-the-art performances in several
challenging problems, such as image classification
or natural language processing (NLP). However
the traditional Al criticism still holds: they are not
epistemologically transparent, as for the limited
interpretability of the neural inferences.

In a question classification (QC) task, e.g. (Li
and Roth, 2006), this is particularly evident. The
category describing the target of a request is rel-
evant in question answering to optimize the later

stages of search and answer detection, and its in-
terpretation depends on a variety of semantic and
syntactic properties of the question. Epistemolog-
ical transparency corresponds here to the ability
of tracing back the connections between linguistic
properties of the input question and the proposed
question category. An example-driven machine
learning model should be able to provide causal re-
lations between the input semantic aspect and the
properties of the question.

For example, given the prediction "What is the
capital of Zimbabwe?” refersto a Location, we
would like the system to motivate it with a sen-
tence such as: Since it seems similar to ”What is
the capital of California?” which also refers to a
Location.

Notice how in neural learning, as for exam-
ple in Multilayer Perceptrons, Long Short-Term
Memory Networks, (Hochreiter and Schmidhuber,
1997), or the more recent Attention-based Net-
works (Larochelle and Hinton, 2010), the network
parameters have no clear conceptual counterpart.

Using the Layerwise Relevance Propagation
(LRP) (Bach et al., 2015) approach, the classi-
fication decisions of a multilayer perceptron are
decomposed backward across the network layers,
and evidence about the contribution of individual
input fragments (i.e. layer 0) to the final decision
is gathered. Evaluation against images (i.e. the
MNIST and ILSVRC data sets) suggests that LRP
activates meaningful associations between input
and output fragments, and this corresponds to trac-
ing back meaningful causal connections.

In this paper, we propose the use of a similar
mechanism over the linguistically motivated
network architectures, as they have been recently
proposed in (Croce et al., 2017): Kernel-based
Deep network architectures aim at integrating
syntactic/semantic information derived from the
adoption of Tree Kernels (Collins and Duffy,

Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 16-24
Brussels, Belgium, November 1, 2018. (©2018 Association for Computational Linguistics

2001) within neural-based learning. Here, we
show that the inferences of such architectures
can be motivated by simply applying the LRP
method, which allows to trace back causal as-
sociations between the semantic classification
and the examples expressed by parse tree-based
metrics. Evaluation of the LRP algorithm to
the problem of explaining the system decisions
allows to demonstrate the meaningful impact of
LRP on semantic transparency: users faced with
explanations are better oriented to accept or reject
the system decisions, thus improving the impact
on the overall application accuracy.

In the rest of the paper, section 2 reports re-
lated works. In section 3 we describe the Kernel-
based Deep Architecture (KDA) while section 4
illustrates the details of LRP and how it connects
to KDAs. In section 5 we propose both a novel
model to generate explanations of a network pre-
diction and an evaluation methodology. In section
6 we provide experimental evidences of the overall
system’s effectiveness against two semantic tasks,
question classification and frame-based argument
classification in the semantic role labeling chain.
Lastly, in section 7 conclusions are derived.

2 Related Work

Linguistically motivated explanatory methods
should provide semantically clear justifications
about a neural network textual inferences.

Methods making the neural learning more read-
able are usually designed to trace back the por-
tions of the network input that mostly contributed
to the output decision. Network propagation tech-
niques are used to identify the patterns of a given
input item (e.g., an image) that are linked to the
particular deep neural network prediction as in
(Erhan et al., 2010; Zeiler and Fergus, 2013). Usu-
ally, these are based on backward algorithms that
layer-wise reuse arc weights to propagate the pre-
diction from the output down to the input, thus
leading to the re-creation of meaningful patterns in
the input space. Typical examples are deconvolu-
tion heatmaps, used to approximate through Tay-
lor series the partial derivatives at each layer (Si-
monyan et al., 2013), or the so-called Layer-wise
Relevance Propagation (LRP), that redistributes
back positive and negative evidence across the lay-
ers (Bach et al., 2015).

Several efforts have been made in the perspec-

17

tive of providing explanations of a neural classi-
fier, often by focusing into highlighting an handful
of crucial features (Baehrens et al., 2010) or deriv-
ing simpler, more readable models from a complex
one, e.g. a binary decision tree (Frosst and Hinton,
2017), or by local approximation with linear mod-
els (Ribeiro et al., 2016). However, although they
can explicitly show the representations learned in
the specific hidden neurons (Frosst and Hinton,
2017), these approaches base their effectiveness
on the user ability to study the quality of the rea-
soning and of the accountability as a side effect
of the quality of the selected features: this can
be very hard in tasks where boundaries between
classes are not well defined. Sometimes, explana-
tions are associated to vector representations as in
(Ribeiro et al., 2016), i.e. bag-of-word in case of
text classification, which is clearly weak at captur-
ing significant linguistic abstractions, such as the
involved syntactic relations. In this work, we pro-
pose a model which allows to provide explanations
that are easily interpretable even by non-expert
users, as they are expressed in natural language
and are hence a more natural solution. It implicitly
captures lexical, semantic and syntactic general-
izations through the generation of a linguistically
fluent explanation of predictions: as this is exploit
linguistic analogies it provides a more transparent
and epistemologically coherent view on the sys-
tem’s decision.

3 A Kernel-based Deep Architecture

In this section, we will first describe the Nystrom
method for generating low dimensional embed-
dings that approximate high dimensional kernel
spaces. Then we will review the Kernel-based
Deep Architecture discussed in (Croce et al.,
2017), that efficiently combines kernel methods
and deep learning by using a Nystrém layer into
a neural architecture.

Given an input dataset D, a kernel K (o0;,0;)
is a similarity function over D? that corresponds
to a dot product in the implicit kernel space,
ie., K(0;,05) = ®(0;) - ®(0j). Kernel func-
tions are used by learning algorithms, such as Sup-
port Vector Machines (Shawe-Taylor and Cristian-
ini, 2004), to operate only implicitly on instances
in the kernel space, by never accessing their ex-
plicit definition. Let us apply the projection func-
tion ® over all examples from D to derive rep-
resentations, & denoting the rows of the matrix

landmarks

Me———1
K(xa ll)
F Il o7 S O
3]
%} Kool | 8 A AN @
A
& ¢ P o=Xo
: i : :
X Kol | 2 ‘ :
e N/
635 O O
N~ — L)
Ll
input Nystrom hidden classification
layer layer layers layer

Figure 1: Kernel-based Deep Architecture.

X. The Gram matrix can always be computed
as G = XX ', with each single element corre-
sponding to G;; = ®(0;)®(0j) = K(0;,05). The
aim of the Nystrom method is to derive a new
low-dimensional embedding Z in a [-dimensional
space, with [< nsothat G = XX and G ~ G.
This is obtained by generating an approximation
G of G using a subset of [columns of the matrix,
i.e., a selection of a subset L. C D of the avail-
able examples, called landmarks. Suppose we ran-
domly sample [columns of G, and let C' € RIPIX!
be the matrix of these sampled columns. Then, we
can rearrange the columns and rows of G and de-
fine X = [X; X3] such that:

B T W XX
G=XX _[X;)(l X Xy
w
and C_[X;Xl}

where W = XlTXl, i.e., the subset of GG that con-
tains only landmarks. The Nystrom approxima-
tion can be defined as:
G~G=CcwicT (1)
where W1 denotes the Moore-Penrose inverse of
W. The Singular Value Decomposition (SVD) is
used to obtain W1 as it follows. First, W is de-
composed so that W = USV', where U and
V' are both orthogonal matrices, and S is a di-
agonal matrix containing the (non-zero) singular
values of W on its diagonal. Since W is sym-
metric and positive definite, W = USU . Then
Wt =US"1UT =US 252U and the Equa-

18

tion 1 can be rewritten as

GrG=CUS 283U CT
— (CUS 2)(CUS™2)T = XXT

Given an input example o € D, a new low-
dimensional representation £ can be thus deter-
mined by considering the corresponding item of
C as

US>)

where ¢ is the vector whose dimensions contain
the evaluations of the kernel function between o
and each landmark o; € L. Therefore, the method
produces [-dimensional vectors.

Notice that an optimal selection of landmarks
can be expected to reduce the Gram Matrix ap-
proximation error. However, the uniform sam-
pling without replacement policy is adopted: it
is in fact theoretically and empirically shown in
Kumar et al. (2012) to achieve results compara-
ble with alternative but (more complex) selection
policies.

In (Croce et al., 2017), the Nystrém represen-
tation Z has been used as input within neural net-
work architectures. In fact, given a labeled dataset
L = {(o,y) | 0o € D, y € Y}, where o refers
to a generic instance and y is its associated class,
a Multi-Layer Perceptron (MLP) architecture can
be defined, with a specific Nystrom layer based
on the Nystrom embeddings of Eq. 2. Such
Kernel-based Deep Architecture (KDA) has an in-
put layer, a Nystrom layer, a possibly empty se-
quence of non-linear hidden layers and a final
classification layer, which produces the output, as
shown in Figure 1.

ISIN

The input layer corresponds to the input vec-
tor C, i.e., the row of the C' matrix associated to
an example o. The input layer is mapped to the
Nystrom layer, through the projection in Equa-
tion 2. Notice that the embedding provides also
the proper weights, defined by U S 7%, so that the
mapping can be expressed through the Nystrom
matrix Hpy, = US™2: it corresponds to a pre-
trained stage derived through SVD. Formally, the
low-dimensional embedding of an input example
0,is % =EHy, =CUS™3.

The resulting outcome i is the input to one or
more non-linear hidden layers. Each t-th hidden
layer is realized through a matrix H, € Rf-1x%
and a bias vector gt e RNt where h; denotes
the desired hidden layer dimensionality. Clearly,
given that Hy, € R*! ho =1. The first hid-
den layer in fact receives in input 7 = cH Nys
that corresponds to the ¢ = 0 layer input £y = z
and its computation is formally expressed by
¥ = f(ZoHy + l;l), where f is a non-linear ac-
tivation function. In general, the generic ¢-th layer
is modeled as:

= f(Z—1Hy + gt) 3)

The final layer of KDA is the classification
layer, realized through the output matrix Hp and
the output bias vector BO, Their dimensionality
depends on the dimensionality of the last hidden
layer (called O_1) and the number |Y'| of different
classes, i.e., Ho € ROVl and by € RIXIVI,
respectively. In particular, this layer computes a
linear classification function with a softmax oper-
ator so that § = softmaz(Zo_, Ho + bo).

In addition to standard dropout, a L9 regulariza-
tion is applied to the norm of each layer.

Finally, the KDA is trained by optimizing a loss
function made of the sum of two factors: first, the
cross-entropy function between the gold classes
and the predicted ones; second the Lo regulariza-
tion, whose importance is regulated by a meta-
parameter A. The final loss function is thus

Ly,)= > ylog@)+x >

(o,y)EL He{H:}U{Ho}

Ty

1]

where ¢ are the softmax values computed by the
network and y are the true one-hot encoding val-
ues associated with the example from the labeled
training dataset L.

As shown in Figure 1, it is worth noticing that
the network is stimulated with an input vector ¢

19

which contains the kernel evaluations K (s, [;) be-
tween each example and the landmarks. When
using linguistic kernels (such as Semantic Tree
Kernels) this measure corresponds to a syntac-
tic/semantic similarity between the x and the sub-
set of examples used for the space reconstruction
(made available through the Nystrom method).
Once stimulated, the network will provide an out-
put. In order to give an explanation to a network
decision, we will discuss in the following section
how to revert the propagation process connecting
output and input. As a side effect we will be able
to determine those landmarks mostly affecting the
final decision and which are more semantically re-
lated to the input instance.

4 Layer-wise Relevance Propagation in
Kernel-based Deep Architectures

Layer-wise Relevance propagation (LRP, pre-
sented in (Bach et al., 2015)) is a framework which
allows to decompose the prediction of a deep neu-
ral network computed over a sample, e.g. an im-
age, down to relevance scores for the single input
dimensions of the sample such as subpixels of an
image.

More formally, let f : R — R* be a posi-
tive real-valued function taking a vector z € R?
as input. The function f can quantify, for exam-
ple, the probability of z being in a certain class.
The Layer-wise Relevance Propagation assigns to
each dimension, or feature, x4 a relevance score
Rgl) such that:

f@) ~ 4Ry @)

Features whose score is Rg) > 0 or R((il) <0
correspond to evidence in favor or against, respec-
tively, the output classification. In other words,
LRP allows to identify fragments of the input play-
ing key roles in the decision, by propagating rele-
vance backwards. Let us suppose to know the rel-
evance score Rg.l“) of a neuron j at network layer

[4 1, then it can be decomposed into messages
D

i; ~ sentto neurons ¢ in layer [:

(1,141)
Z Lo

Hence it derives that the relevance of a neuron ¢ at
layer [can be defined as:

Ry“ 5)

(1,141)
> R

je(l+1)

RY = 6)

Note that 5 and 6 are such that 4 holds. In this
work, we adopted the e-rule defined in (Bach et al.,

2015) to compute the messages Rg’_l;.rl):
Rgf,_l;—l) _ Zij (1+1)

zj + € -sign(z;) 7

where z;; = x;w;; and € > 0 is a numerical sta-
bilizing term and must be small. The informative
value is justified by the fact that the weights z;;
are linked to the activation weights w;; of the in-
put neurons.

If we apply it to a KDA processing linguistic ob-
servations, then LRP implicitly traces back the
syntactic, semantic and lexical relations between
the example and the landmarks, thus it selects the
landmarks whose presences were the most influ-
ential to identify the predicted structure in the sen-
tence. Indeed, each landmark is uniquely associ-
ated to an entry of the input vector ¢, as illustrated
in Sec 3.

5 Explanatory Models

Justifications for the KDA emissions can be ob-
tained by explaining the evidence in favour or
against a class using landmarks {¢} as examples.
The idea is to select those {¢} that the LRP method
produces as the most active elements in layer O.
Once such active landmarks are detected, an Ex-
planatory Model is a function in charge to com-
pile the linguistically fluent explanation by using
analogies or differences with the input case. The
semantic expressiveness of such analogies makes
the resulting explanation clear and increases the
user confidence on the system reliability. When
a sentence s is classified, LRP assigns activation
scores 7 to each individual landmark ¢: let L)
(or £(7)) denote the set of landmarks with positive
(or negative) activation score.

Formally, every explanation is characterized by

atriple e = (s, C, 7) where s is the input sentence,
C is the predicted label and T is the modality of the
explanation: 7 = +1 for positive (i.e. acceptance)
statements while 7 = —1 correspond to rejections
of the decision C'.
A landmark /¢ is positively activated for a given
sentence s if there are not more than k— 1 other ac-
tive landmarks ¢/ whose activation value is higher
than the one for /, i.e.

{0 et 0 £onry >r>0} <k

Similarly, a landmark is negatively activated
when:

20

{0 e L) 0 #£0nr) <ri <0} <k

where k is a parameter used to make explana-
tion depending on not more than k landmarks, de-
noted by L. Positively (or negative) active land-
marks in L are assigned to an activation value
a(l,s) =+1 (—1), while a(¢, s) = 0 for all other
not activated landmarks.

Given the explanation e = (s, C, 7), alandmark
¢ whose (known) class is Cy is consistent (or in-
consistent) with e according to the fact that the
following function:

0(Cy, C)-all,q) - T

is positive (or negative, respectively), where
5(C",C) = 203ron(C" = C) — 1 and gy, is the
Kronecker delta.

An explanatory model is then a function
M (e, L};) which maps an explanation e, a sub set
L. of the active and consistent landmarks £ for e
into a sentence f in natural language. Of course
several definitions for M (e, L)) are possible. A
general explanatory model would be:

’s is C since it is similar to £’
Vee £l ifr>0

’s is not C' since it is different
from ¢ which is C’
Vee £, ifT <0

M(e, ﬁk) =

’s is C' but I don’t know why’
ifL=10

where Ef are the partition of landmarks with pos-
itive and negative relevance scores in Ly, respec-
tively.

Here we introduce three explanatory models we
used during experimental evaluation:

(Basic Model) The first model is the simplest.
It returns an analogy only with the (unique) con-
sistent landmark with the highest positive score
if 7 = 1 and lowest negative score when
T —1. In case no active and consistent
landmark can be found, the Basic Model re-
turns a phrase stating only the predicted class,
with no explanation. As an example the ex-
planation of an accepted decision in an argu-
ment classification task, described by the triple
e1 = (’Putthis plate in the center of the table’,
THEMEppacinG, 1), would be mapped by the
model into:

I think this plate” is THEME of PLACING in ”Robot
PUT this plate in the center of the table” since similar to
”the soap” in ”Can you PUT the soap in the washing

machine?”.

(Multiplicative Model) In a second model, de-
noted as multiplicative, the system makes refer-
ence to up to k1 < k analogies with positively
(or negatively) active and consistent landmarks.
Given the above explanation e, and k1 = 2, it
would return:

I think this plate” is THEME of PLACING in ”Robot

PUT this plate in the center of the table” since similar to

”the soap” in ”Can you PUT "the soap” in the washing
machine?” and it is also similar to ’my coat” in "HANG my

coat in the closet in the bedroom”.

(Contrastive Model) The last proposed model
is more complex since it returns both a positive
(whether 7 = 1) and a negative (7 = —1) analogy
by selecting, respectively, the most positively rel-
evant and the most negatively relevant consistent
landmark: For instance, given el, it could return:

1 think **this plate” is the THEME of PLACING in ”Robot
PUT this plate in the center of the table” since similar to
”the soap” which is in ”Can you PUT the soap in the
washing machine” and it is not the GOAL of PLACING
since different from *’on the counter” in "PUT the plate on

the counter”.

5.1 Using information theory for validating
explanations

Let P(C|s) and P(C|s,e) be, respectively, the
prior probability of the classification of s being
correct and the probability of the classification be-
ing correct given an explanation. Note that both
indicate the level of confidence the user has in the
classifier (i.e. the KDA) given the amount of avail-
able information, i.e. with and without explana-
tion. Three explanations are possible:

Useful explanations: these are explanations
such that C' is correct and P(C|s,e) >
P(C]s) or C is not correct and P(Cls,e) <
P(Cls)

Useless explanations: they are explanations
such that P(C|s,e) = P(C|s)

Misleading explanations: they are explana-
tions such that C' is correct and P(C|s,e) <
P(C|s) or C is not correct and P(Cls,e) >
P(C|s)

21

The core idea is that semantically coherent and ex-
haustive explanations must indicate correct clas-
sifications whereas incoherent or non-existent ex-
planations must hint towards wrong classifica-
tions.

Given the above probabilities, we can mea-
sure the quality of an explanation by computing
the achieved Information Gain (Kononenko and
Bratko, 1991): the posterior probability is ex-
pected to grow w.r.t. to the prior one for cor-
rect decisions when a good explanation is avail-
able against the input sentence, while decreas-
ing for bad or confusing explanations. The intu-
ition behind Information Gain is that it measures
the amount of information (provided in number
of bits) gained by the explanation about the user
decision of accepting the system classification on
an incoming sentence s. A positive gain indicates
that the probability amplifies towards the right de-
cisions, and declines with errors. We will let users
to judge the quality of the explanation and assign
them a posterior probability that increases along
with better judgments. In this way we have a mea-
sure of how convincing the system is about its de-
cisions as well as how weak it is to clarify erro-
neous cases. To compare the overall performance
of the different explanatory models M, the Infor-
mation Gain is measured against a collection of
explanations generated by M and then normalized
throughout the collection’s entropy E as follows:

I, (7

= I(j
GEAPIE
7=1
where 7Ty is the explanations collection and I(j) is
the Information Gain of explanation j.

6 Experimental Evaluation

The effectiveness of the proposed approach has
been measured against two different semantic pro-
cessing tasks,i.e. question classification and argu-
ment classification in semantic role labeling. The
Nystrom projection has been implemented in the
KeLP framework (Filice et al., 2018)', the neural
network and LRP have been implemented in Ten-
sorflow?, with 1 and 2 hidden layers, respectively,
whose dimensionality corresponds to the number
of involved Nystrom landmarks (500 and 200, re-

"http://www.kelp-ml.org
*https://www.tensorflow.org

Category P(Cls,e) 1— P(C]s,e)
V.Good 0.95 0.05
Good 0.8 0.2
Weak 0.5 0.5
Bad 0.2 0.8
Incoher. 0.05 0.95

Table 1: Posterior probabilities w.r.t. quality categories

Class Incoher. Bad Weak Good V.Good
Incoher. 1.00 0.83 050 0.16 0.00
Bad 0.83 1.00 0.66 0.33 0.16
Weak 0.50 0.66 1.00 0.66 0.50
Good 0.16 0.33 0.66 1.00 0.83
V.Good 0.00 0.16 0.50 0.83 1.00

Table 2: Weights for the Cohen’s Kappa «,, statistics

spectively, randomly selected?), and the adoption
of dropout regularization in hidden and final lay-
ers. For both tasks, hyper-parameters have been
optimized via grid-search. The Adam optimizer
has been applied to minimize the cross-entropy
loss function, with a multi-epoch (500) training,
each fed with batches of size 256. We adopted
an early stop strategy, where the best model was
selected according to the performance over the de-
velopment set.

For evaluating our explanation method, we de-
fined five quality categories and associated them
to values for the posteriori probability P(C!s, e),
as shown in Table 1. We gathered into explana-
tion datasets hundreds of explanations from the
three models for each task and presented them to
a pool of annotators (further details in related sub-
sections) for independent labeling; annotators had
no information of the correctness of the system
emissions but just knowledge about the dataset en-
tropy. We addressed their consensus by measuring
a weighted Cohen’s Kappa.

6.1 Question Classification

In our first evaluation, we replicated the experi-
ments reported by (Croce et al., 2017) with respect
to the question classification task. We thus used
the UIUC dataset (Li and Roth, 2006), including
a training and test set of 5452 and 500 questions,
respectively, organized in 6 coarse-grained classes
(as ENTITY or HUMAN). We generated Nystrom
representation of the Compositionally Smoothed
Partial Tree Kernel (Annesi et al., 2014) function
with default parameters = A = 0.4. Using 500

3More complex policies have been applied to select land-
marks but statistically significant results have not been mea-
sured (not reported here due to space limitations).

22

QC SRL-AC
Basic 0.548 0.669
Multiplicative 0.514 0.662
Contrastive 0.576 0.667
Kaw 0.677 0.783
accuracy 0.926 0.961

Table 3: Information gains for the three Explanatory
Models applied to the SRL-AC and QC datasets. &, is
the weighted Cohen’s Kappa k.

landmarks, the KDA accuracy was 92.6%.

A group of 3 annotators evaluated an explanation
dataset of 300 explanations (perfectly balanced be-
tween correct and not correct classification), com-
posed of 100 explanations for each model. Perfor-
mances are shown in Table 3.

All three explanatory models were able to gain
more than half the required information in order to
ascertain the correctness of the classification.
Consider:

1 think ”What year did Oklahoma become a state ?” refers
to a NUMBER since similar to " The film Jaws was made in

what year ?”

The model provided an evidently coherent anal-
ogy, but this is a easy case due to the occurrence
in both questions of very discriminative words, i.e
“what year”. However, the system is also able to
capture semantic similarities when both syntactic
and lexical features are different. E.g.:

[think ”Where is the Mall of the America ?” refers to a
LOCATION since similar to ”What town was the setting for
The Music Man ?”.

This is an high-quality explanation since the sys-
tem provided an analogy with a landmark request-
ing the same fine-grained category but with little
sharing of lexical and syntactic information (note,
for example, the absence in the landmark of the
very discriminative word “where”). Let us now
consider the case of wrong classifications:

I think ”Mexican pesos are worth what in U.S. dollars ?”
refers to a DESCRIPTION since similar to "What is the

Bernoulli Principle ?”

The system provided an explanation that is not
possible to easily interpret: indeed it was labeled
as [Incoherent] by all the annotators.

However, system effectiveness is limited in case
of negative modality for correct classifications. In
these cases explanations, albeit coherent, can be
trivial and do not actually help in reducing uncer-
tainty about the correct target class. The explana-
tion

[think ”What is angiotensin ?” does not refer to a NUM

since different from ”What was Einstein ’s 1Q ?”.

is correct but obvious. As an alternative, a nega-
tive analogy with a very likely class, i.e. ENTITY
or DESCRIPTION, would have provided more
useful information for disambiguation. A second
challenge is represented by inherently ambiguous
questions. The following explanation

1 think ”What is the sales tax in Minnesota ?” refers to a
NUMBER since similar to ”What is the population of
Mozambique ?” and does not refer toa ENTITY since
different from ”What is a fear of slime ?”.

tells why NUMBER is a more likely class than
ENTITY. Although seemingly correct, this is a
mistake, as ENTITY is the proper decision. How-
ever, the explanation is perfectly fine, as it well
expresses the decision’s rationale: lack of contex-
tual information in the question is here the main
cause of the error.

6.2 Argument Classification

Semantic role labeling (SRL (Palmer et al., 2010))
consists in detecting the semantic arguments asso-
ciated with the predicate of a sentence and their
classification into their specific roles (Fillmore
(1985)). For example, given the sentence “Bring
the fruit onto the dining table”, the task would
be to recognize the verb “bring” as evoking the
BRINGING frame, with its roles, THEME for “the
fruit” and GOAL for “onto the dining table”. Ar-
gument classification corresponds to the subtask
of assigning labels to the sentence fragments span-
ning individual roles.

As proposed in (Moschitti et al., 2008), SRL
can be modeled as a multi classification task over
each parse tree node n, where argument spans re-
flect sub-sentences covered by the tree rooted at
n. Consistently with (Croce et al., 2011), in our
experiments the KDA has been empowered with
a Smoothed Partial Tree Kernel, operating over
Grammatical Relation Centered Tree (GRCT) de-
rived from dependency grammar.

We used the HuRIC dataset (Bastianelli et al.,
2014), including over 650 annotated transcrip-
tions of spoken robotic commands, organized in
18 frames and about 60 arguments*. We extracted
single arguments from each HuRIC example, for a
total of 1, 300 instances. We run experiments with
a methodology similar to the one described in Sec

*http://sag.art.uniroma2.it/ludr.html

23

6.1, but due to the limited data size we performed
extensive 10-fold cross-validation, optimizing net-
work hyper-parameters via grid-search for each
test set. We generated Nystrom representation of
a equally-weighted linear combination of SPTK
function with default parameters ¢ = A = 0.4 and
of linear kernel function applied to sparse vector
representing the instance frame. With these set-
tings, the KDA accuracy was 96.1%. We sam-
pled 692 explanations almost equally distributed
among the 3 explanatory models. Two annotators
were involved.

Results are shown in Tab 3. In this task, all
models were able to gain more than two thirds of
needed information. The alike scores of the three
models are probably due to the narrow linguistic
domain of the corpus and the well-defined seman-
tic boundaries between the arguments. To show
the capability of such models, let us consider:

I think ’the washer” is the CONTAINING OBJECT of
CLOSURE in ”Robot can you OPEN the washer?” since
similar to ’the jar” in "CLOSE the jar” and it is not the
THEME of BRINGING since different from ’the jar” in
"TAKE the jar to the table of the kitchen”.

I think me” is the BENEFICIARY of BRINGING in "I
would like some cutlery can you GET me some?” since
similar to ”me” in "BRING me a fork from the press.” and it
is not the COTHEME of COTHEME since different from
”me” in "Would you please FOLLOW me to the kitchen?”.

The above commands have very limited lexical
overlap with retrieved landmarks. Nevertheless,
the analogies make explanations quite effective:
explanatory models seems to successfully capture
semantic and syntactic relations among input in-
stances and closely related landmarks.

7 Conclusion

This paper investigated the effectiveness of a novel
method to generate epistemologically transparent
and linguistically fluid explanations for a neural
predictor emissions. The proposed approach ap-
plies LRP to a KDA to backpropagate and redis-
tribute the prediction to input entries. It then pro-
duces a sentence exploiting analogies with land-
marks, according to different explanatory models.
Moreover a novel evaluation methodology based
on Information Theory is provided. Empirical in-
vestigations carried out against the QC and AC
tasks confirm that the explanatory models con-
tribute to increase the user confidence in the ma-
chine correct responses.

References

Paolo Annesi, Danilo Croce, and Roberto Basili. 2014.
Semantic compositionality in tree kernels. In Pro-
ceedings of CIKM 2014. ACM.

Sebastian Bach, Alexander Binder, Gregoire Mon-
tavon, Frederick Klauschen, Klaus-Robert Mller,
and Wojciech Samek. 2015. On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise
relevance propagation. PLOS ONE, 10(7).

David Baehrens, Timon Schroeter, Stefan Harmel-
ing, Motoaki Kawanabe, Katja Hansen, and Klaus-
Robert Miiller. 2010. How to explain individ-
ual classification decisions. J. Mach. Learn. Res.,
11:1803-1831.

Emanuele Bastianelli, Giuseppe Castellucci, Danilo
Croce, Luca locchi, Roberto Basili, and Daniele
Nardi. 2014. Huric: a human robot interaction cor-
pus. In LREC, pages 4519-4526. European Lan-
guage Resources Association (ELRA).

Michael Collins and Nigel Duffy. 2001. New rank-
ing algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In Pro-
ceedings of the 40th Annual Meeting on Association
for Computational Linguistics (ACL ’02), July 7-12,
2002, Philadelphia, PA, USA, pages 263-270. Asso-
ciation for Computational Linguistics, Morristown,
NIJ, USA.

Danilo Croce, Simone Filice, Giuseppe Castellucci,
and Roberto Basili. 2017. Deep learning in seman-
tic kernel spaces. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 345-354,
Vancouver, Canada. Association for Computational
Linguistics.

Danilo Croce, Alessandro Moschitti, and Roberto
Basili. 2011. Structured lexical similarity via convo-
lution kernels on dependency trees. In Proceedings
of EMNLP ’11, pages 1034—1046.

Dumitru Erhan, Aaron Courville, and Yoshua Ben-
gio. 2010. Understanding representations learned in
deep architectures. Technical Report 1355, Univer-
sit¢ de Montréal/DIRO.

Simone Filice, Giuseppe Castellucci, Giovanni Da San
Martino, Alessandro Moschitti, Danilo Croce, and
Roberto Basili. 2018. Kelp: a kernel-based learning
platform. Journal of Machine Learning Research,
18(191):1-5.

Charles J. Fillmore. 1985. Frames and the semantics of
understanding. Quaderni di Semantica, 6(2):222—
254.

Nicholas Frosst and Geoffrey Hinton. 2017. Distilling
a neural network into a soft decision. CEUR Work-
shop Proceedings, 2071.

24

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735—
1780.

Igor Kononenko and Ivan Bratko. 1991. Information-
based evaluation criterion for classifier’s perfor-
mance. Machine Learning, 6(1):67-80.

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar.
2012. Sampling methods for the nystrém method.
J. Mach. Learn. Res., 13:981-1006.

Hugo Larochelle and Geoffrey E. Hinton. 2010. Learn-
ing to combine foveal glimpses with a third-order
boltzmann machine. In Proceedings of Neural In-
formation Processing Systems (NIPS), pages 1243—
1251.

Xin Li and Dan Roth. 2006. Learning question clas-
sifiers: the role of semantic information. Natural
Language Engineering, 12(3):229-249.

Alessandro Moschitti, Daniele Pighin, and Roberto
Basili. 2008. Tree kernels for semantic role label-
ing. Computational Linguistics, 34.

M.S. Palmer, D. Gildea, and N. Xue. 2010. Seman-
tic Role Labeling. Online access: IEEE (Institute
of Electrical and Electronics Engineers) IEEE Mor-
gan & Claypool Synthesis eBooks Library. Morgan
& Claypool Publishers.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. ”why should I trust you?”: Ex-
plaining the predictions of any classifier. CoRR,
abs/1602.04938.

John Shawe-Taylor and Nello Cristianini. 2004. Ker-
nel Methods for Pattern Analysis. Cambridge Uni-
versity Press, Cambridge, UK.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2013. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. CoRR, abs/1312.6034.

Matthew D. Zeiler and Rob Fergus. 2013. Visualizing
and understanding convolutional networks. CoRR,
abs/1311.2901.

Nightmare at test time:
How punctuation prevents parsers from generalizing

Anders Sggaard'

!Dpt. of Computer Science
University of Copenhagen

Abstract

Punctuation is a strong indicator of syntac-
tic structure, and parsers trained on text with
punctuation often rely heavily on this signal.
Punctuation is a diversion, however, since hu-
man language processing does not rely on
punctuation to the same extent, and in infor-
mal texts, we therefore often leave out punc-
tuation. We also use punctuation ungrammati-
cally for emphatic or creative purposes, or sim-
ply by mistake. We show that (a) dependency
parsers are sensitive to both absence of punctu-
ation and to alternative uses; (b) neural parsers
tend to be more sensitive than vintage parsers;
(c) training neural parsers without punctuation
outperforms all out-of-the-box parsers across
all scenarios where punctuation departs from
standard punctuation. Our main experiments
are on synthetically corrupted data to study the
effect of punctuation in isolation and avoid po-
tential confounds, but we also show effects on
out-of-domain data.

1 Introduction

We study the sensitivity of modern dependency
parsers to punctuation. While punctuation was
originally motivated by reading aloud, serving the
purpose of “breath marks” (Baldwin and Coady,
1978), many modern-day punctuation systems are
designed to facilitate grammatical disambiguation.
This paper aims to show that for this reason,
punctuation can significantly hurt the generaliza-
tion ability of state-of-the-art syntactic parsers. In
other words, syntactic parsers become too reliant
on punctuation and therefore suffer from the ab-
sence or creative uses of punctuation. Such uses
are abundant; see Table 1 for examples from Twit-
ter. Such situations, where highly predictive fea-
tures are absent or distorted at test time, were re-
ferred to in Globerson and Roweis (2006) as night-
mare at test time. Human reading is very robust
to variation in punctuation (Baldwin and Coady,

Miryam de Lhoneux® Isabelle Augenstein'

2 Dpt. of Linguistics and Philology
Uppsala University

No punctuation

(1) ihave so many questions i dont know where to start

Creative punctuation
(2) What. The. Fuck. Ever. Dot. Com
(3) ...andthen,,,,istartto feel ~lonely~

Both
(4) Ifeellike ... idk ... idk ... idk man. Nvm I’'m good.

Table 1: Examples of uses of punctuation

1978); so creative use of punctuation does not hurt
human reading performance. In effect, sensitiv-
ity to punctuation is a major obstacle that prevents
our syntactic parser from achieving human-level
robustness.

The generalization ability of a dependency
parser is usually measured by evaluating its ac-
curacy on held-out data, our yardstick to prevent
over-fitting, i.e. we define the degree to which a
parser has over-fitted to the training data as the
difference between performance on training data
and performance on the held-out data. This prac-
tice is poor when data is not i.i.d., since the held-
out data cannot be assumed to be representative; in
such cases, little or no over-fitting does not guar-
antee our parsers have learned important linguis-
tic generalizations: Rather, the parsers may have
over-fitted to superficial cues that are present in
both the training and test datasets (Jo and Bengio,
2017). We argue that punctuation signs are super-
ficial cues preventing modern parsers from learn-
ing appropriately high-level abstractions from our
datasets.

Contributions We evaluate three neural depen-
dency parsers for English, as well as two older al-
ternatives, on a standard benchmark, before and
after stripping punctuation, as well as after in-
jecting more punctuation signs in the benchmark.

Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 25-29
Brussels, Belgium, November 1, 2018. (©2018 Association for Computational Linguistics

nsubj

Amod punct

punct

John s 27 s likes jazz

Figure 1: Punctuation in Stanford dependencies

We show that (a) projective parsers are, unsur-
prisingly, more sensitive to punctuation injection
than non-projective ones, since punctuation injec-
tion may introduce crossing edges, and (b) neu-
ral parsers are more sensitive than vintage parsers.
The latter is our main contribution, but we also
show that training a neural parser without punc-
tuation outperforms all parsers trained in a regu-
lar fashion across all punctuation scenarios. Our
experiments are on semi-synthetic data to control
for confounds, but we also show the parser trained
without punctuation is superior on real data with
non-standard punctuation.

2 Punctuation in Stanford dependencies

Dependency annotation Dependency annota-
tion refers to the manual assignment of syntac-
tic structures to sentences, following one of sev-
eral sets of available annotation guidelines. This
paper focuses exclusively on the Stanford depen-
dencies annotation scheme (de Marneffe and Man-
ning, 2008). This scheme restricts the set of
possible syntactic structures to single-rooted, or-
dered, possibly non-projective trees whose edges
are uniquely labeled by a single dependency label.

Punctuation Punctuation should be distin-
guished from diacritics and logographs. The
two most frequently used punctuation signs are
periods and commas. Periods (““.”), however, are
potentially ambiguous with other uses of dots,
typically indicating omissions or pauses. When
dots are used emphatically and creatively it is
hard to maintain this distinction, and we will
simply refer to dots and commas in this paper. We
ignore other punctuation signs, including dashes,
question and exclamation marks, and colons and
semicolons.

Punctuation is, among other things, used to
mark boundaries between constituents of written
language. Space characters, for example, sepa-
rate words, albeit sometimes inconsistently. Spac-
ing is a fairly recent innovation in writing; classi-
cal Latin and Greek did not leave spaces between

26

words, and many Asian languages, e.g., Thai and
Lao, still do not. A period is typically used to
mark the end of a grammatical sentence, and com-
mas are often used to separate clauses. Therefore,
punctuation also correlates strongly with proper-
ties of syntactic structures and is therefore very
predictive of dependency structures.

Variation in punctuation is often observed in in-
formal texts, but variation may also be the result
of errors. Punctuation errors are by far the most
frequent error type in scientific writing, for exam-
ple (Remse et al., 2016). Modern parsers should
be robust to such variation, just like humans are
(Baldwin and Coady, 1978).

Punctuation in Stanford dependencies In the
Stanford dependencies (de Marneffe and Man-
ning, 2008), periods attach to root tokens, and
commas attach to their left neighbor or to root to-
kens; see Figure 1.

3 Experiments

This section describes how we remove and inject
punctuation (our perturbation maps), and details
of the parsers used in our experiments.

Perturbation maps Since dots consistently at-
tach to the root token of the sentence, and com-
mas attach to their left neighbour or to the root
token, we can remove and inject additional punc-
tuation in a sentence without affecting the rest of
its syntactic structure and without violating the
wellformedness of dependency trees. Note, how-
ever, that injecting a root-dominated dot or comma
may lead to crossing edges, i.e., turn a projective
dependency tree into a non-projective one. This
may lead to cascading errors for projective de-
pendency parsers (Ng and Curran, 2015). In our
experiments, arc-eager MALTPARSER and STAN-
FORD are the only projective parsers. We there-
fore propose two perturbation maps (Jo and Ben-
gio, 2017): (a) simply removing punctuation, and
(b) a simple injection scheme with two parame-
ters x and §. Let a dependency structure be an
ordered tree with n nodes decorated with words
wi, ..., Wy. Atany node 1 < ¢ < n, we (a) in-
ject a comma at position ¢ with probability x and
move nodes ¢ < j < n to positions j + 1, increas-
ing the size of the graph by 1; and (b) inject a dot
at position ¢+ 1 with probability é and move nodes
i < 7 < nto positions j + 1, increasing the size of
the graph by 1. If we follow standard methodology

Parser | Neural Trans.-based Projective
UUPARSER v v

KGRAPHS v

MALTPARSER v
TURBOPARSER

STANFORD v v v

Table 2: Our dependency parsers

and ignore punctuation when evaluating parsers,
we can compare evaluations before and after ap-
plying the injection scheme. It is equally straight-
forward to remove punctuation without affecting
the rest of the dependency tree. Each element w;
to the right of punctuation nodes w; (¢ > j) moves
to the left (j — 1) for every punctuation item, de-
creasing the length of the sentence by 1 each time.

Note that both removing punctuation and our in-
jection scheme can be seen as perturbation maps
(Jo and Bengio, 2017) of our dataset, with the
following important properties: (a) grammatical
structure recognizability, i.e., human ability to cor-
rectly process sentences, is preserved (Baldwin
and Coady, 1978), (b) surface statistical regular-
ities are qualitatively different, and (c) there exists
a non-trivial generalization map between the orig-
inal dataset and the perturbed version. These prop-
erties mean we can use our punctuation injection
scheme to evaluate the sensitivity of neural depen-
dency parsers to the surface statistical regularities
involving dots and commas (Jo and Bengio, 2017).
Since human reading is largely unaffected by er-
roneous punctuation, we may expect parsers to be
robust to absence of punctuation and punctuation
injection, as well. Our results clearly show this is
not the case; in fact, recently proposed neural de-
pendency parsers are very sensitive to differences
in punctuation.

Our dependency parsers We use five parsers
in our experiments: the Uppsala parser (UU-
PARSER) (de Lhoneux et al., 2017a,b), the graph-
based parser proposed in (Kiperwasser and Gold-
berg, 2016)(KGRAPHS) , the arc-eager MALT-
PARSER (Nivre et al., 2007), the TURBOPARSER
(Fernandez-Gonzalez and Martins, 2015), and the
STANFORD parser (Chen and Manning, 2014).
UUPARSER is a neural transition-based depen-
dency parser, while KGRAPHS is a neural graph-
based parser. MALTPARSER is a more tradi-
tional transition-based parser, and TURBOPARSER
is a more traditional graph-based parser. Fi-

27

nally, the STANFORD parser is a projective, neu-
ral transition-based dependency parser. All parsers
rely on predicted part-of-speech tags, except UU-
PARSER (which does not rely on part-of-speech
information at all). We use the TURBOTAGGER
to obtain those. See Table 2 for an overview of our
parsers.

Finally, we also evaluate three non-standard
versions of the UUPARSER, namely, a parser
trained with the same parameters as the off-
the-shelf parser (de Lhoneux et al., 2017b), but
which simply ignores dots and commas com-
pletely (NOPUNCT), and two heavily regularised
versions of the parser trained in the standard fash-
ion: (a) a version trained with the drop-out param-
eter set to 0.8 (zeros out 80% of activations); (b) a
version with the gradient clipping parameter set to
0.075. We do so to answer the question of whether
more heavily regularized dependency parsers are
less sensitive to punctuation (they are not).

4 Results and analysis

We discuss the sensitivity of off-the-shelf depen-
dency parsers to our perturbation maps, comparing
to a parser trained after removing punctuation in
the training data, as well as to heavily regularised
versions of the same parser.

No punctuation We first test our parsers on
a version of the validation set where we strip
away all punctuation. The data thus consists of
newswire (WSJ 22) with punctuation removed.
This is similar to Example (1) in Table 1, but in-
domain. The results are in the second results col-
umn in Table 3, with the relative increases in er-
ror listed in the third results column. The drop in-
duced by removing punctuation is quite dramatic:
The UUPARSER, for example, suffers an absolute
drop of 5.4% LAS or an error increase of 67%.
For every three mistakes, UUPARSER does, strip-
ping away punctuation makes it introduce another
two. Note that, generally, the relative increase in
error is much higher for the three neural parsers,
and that the regularisation strategies (drop-out and
gradient clipping) do not seem to help much.

Comma and dot injection At medium injection
rates, all parsers are sensitive to punctuation in-
jection. With § = 0.05,~ = 0.05, for example, all
parsers perform worse than in the absence of punc-
tuation. Our main observation is, again, that neu-
ral parsers suffer higher relative increases in errors

ENGLISH PENN TREEBANK (CORRUPTED)

OUT-OF-DOMAIN

0=0 NO Relerr. | 6=0.01 0=0.01 6=0.05 6=0.05 ¢=0.1 | Rel.err. GWEB FOSTER

x=0 | PUNCT incr. x=0.01 x=0.05 x=0.01 x=0.05 x=0.1 incr. ANSW REV | FOOTBALL TWITTER
UUPARSER 0.918 | 0.869 | 0.598 0.901 0.867 0.886 0.851 0.794 | 1.512 | 0.676 0.662 0.770 0.699
KGRAPHS 0.910 | 0.865 0.500 0.894 0.861 0876 0.841 0.779 | 1456 | 0.645 0.609 0.774 0.715
MALTPARSER 0.858 | 0.805 0.373 0.836 0.791 0.804 0.757 0.675 | 1.289 | 0.605 0.566 0.721 0.642
TURBOPARSER | 0.894 | 0.852 | 0.396 0.883 0.858 0.875 0.851 0.802 | 0.868 | 0.640 0.595 0.766 0.722
STANFORD 0.870 | 0.816 | 0415 0.845 0.808 0.806 0.772 0.688 | 1.400 | 0.640 0.608 0.735 0.689
NO PUNCT ‘ 0.898 ‘ 0.898 | 0.000 0.898 0.898 0.000 | 0.670 0.669 0.792 0.701
DROPOUT a=0.8 | 0.904 | 0.847 | 0.594 0.884 0.845 0.858 0.820 0.748 | 1.625 | 0.661 0.652 0.761 0.682
CLIP t=0.075 0917 | 0.871 0.554 0900 0.864 0.887 0.851 0.793 | 1.494 | 0.672 0.657 0.792 0.676

Table 3: Labeled attachment scores with punctuation removed. All parsers suffer from absence of or additional

punctuation. The relative increase in error (1-BL

— 1; with BL performance on original text; SYS performance

under NO PUNCT and 6 = 0.1, x = 0.1, resp.) for neural parsers is higher than for non-neural parsers. GWEB and
FOSTER scores are on development sentences (of at least five words) with no punctuation.

than vintage parsers. Note that the MALTPARSER
is a projective parser and therefore has a higher
relative increase in error; but TURBOPARSER is
much more robust than the other parsers. That
said, it still does much worse than the UUPARSER
trained without punctuation.

Evaluation on informal text with non-standard
punctuation We also evaluate the models on
sentences with non-standard punctuation in the de-
velopment sections in the Google Web Treebank
with informal text (from Yahoo Answers and user
reviews). Specifically, we evaluate the models on
sentences with more than one dot. Again, we show
that the neural dependency parser trained without
punctuation is superior to the other parsers.

5 Related work

Punctuation in parsing Spitkovsky et al.
(2011) introduced the idea of splitting sentences
at punctuation and imposing parsing restrictions
over the fragments and observed significant im-
provements in the context of unsupervised pars-
ing. Ng and Curran (2015) aim to prevent cascad-
ing errors by enforcing correct punctuation arcs.
They restrict themselves to projective dependency
parsing; erroneous punctuation arcs do not lead
to cascading errors in non-projective dependency
parsing. Ma et al. (2014), motivated by the same
observation, treat punctuation marks as properties
of their neighboring words rather than as individ-
ual tokens, showing improvements on in-domain
data.

Breaking NLP models Jia and Liang (2017)
show how machine reading models can easily
be broken with distractor sentences at test time

28

and propose an alternative evaluation scheme, and
Belinkov and Bisk (2018) show how susceptible
character-based machine translation models are to
noise. Both papers are similar to ours in evaluat-
ing the performance of state-of-the-art models un-
der corruptions of the data. There was recently a
workshop dedicated to evaluation of NLP models
under human adversarial example selection (Et-
tinger et al., 2017). Historically, NLP models were
rarely evaluated on synthetic or otherwise adver-
sarial data, but we believe this is a fruitful research
direction. This is largely a philosophical ques-
tion, and we believe a philosophical argument is
in order. John Dewey (John Dewey, 1910), the
American philosopher, distinguishes three modes
of thinking: (i) common reasoning, which iden-
tifies pattern in available, historical data, (ii) em-
pirical thinking, which collects new data to vary
the experimental conditions, and (iii) experimental
thinking, which actively modifies the conditions in
controlled experiments to isolate the relevant vari-
ables. We believe recent work on breaking NLP
models is an attempt to introduce experimental
thinking into NLP, which has otherwise been lim-
ited — or handicapped in Dewey’s words — by what
data happens to be available.

6 Conclusions

We evaluate the sensitivity of five dependency
parsers to variations in punctuation, showing that
available neural parsers tend to be more sensitive
to such variation. We also show, however, that
training neural parsers without punctuation pro-
vides a robust model that is better than any off-
the-shelf parsers.

Acknowledgments

We thank CSC in Helsinki and Sigma?2 in Oslo for
providing the computational resources used in the
experiments, through NeIC-NLPL (www.nlpl.eu).
The first author was supported by an ERC Starting
Grant.

References

Scott Baldwin and James Coady. 1978. Psycholinguis-
tic approaches to a theory of punctuation. Journal
of Literacy Research, 10(4):363-376.

Yonatan Belinkov and Yonatan Bisk. 2018. Syn-
thetic and Natural Noise Both Break Neural Ma-
chine Translation.

Dangi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of EMNLP, pages 740-750.
Association for Computational Linguistics.

Allyson Ettinger, Sudha Rao, Hal Daumé III, and
Emily M. Bender. 2017. Towards Linguistically
Generalizable NLP Systems: A Workshop and
Shared Task. In Proceedings of the First Workshop
on Building Linguistically Generalizable NLP Sys-
tems, pages 1-10, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Daniel Fernandez-Gonzalez and André F. T. Martins.
2015. Parsing as reduction. In Proceedings of
ACL, pages 1523-1533. Association for Computa-
tional Linguistics.

Amir Globerson and Sam Roweis. 2006. Nightmare
at test time: robust learning by feature deletion. In
ICML.

Robin Jia and Percy Liang. 2017. Adversarial Ex-
amples for Evaluating Reading Comprehension Sys-
tems. In Proceedings of EMNLP.

Jason Jo and Yoshua Bengio. 2017. Measuring the ten-
dency of CNNs to Learn Surface Statistical Regular-
ities. CoRR, abs/1711.11561.

John Dewey. 1910. How we think. Dover.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. 4:313-327.

Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu
Kiperwasser, Sara Stymne, Yoav Goldberg, and
Joakim Nivre. 2017a. From raw text to universal
dependencies - look, no tags! pages 207-217, Van-
couver, Canada.

Miryam de Lhoneux, Sara Stymne, and Joakim Nivre.
2017b. Arc-hybrid non-projective dependency pars-
ing with a static-dynamic oracle. In Proceedings of
the 15th International Conference on Parsing Tech-
nologies, pages 99—104, Pisa, Italy.

29

Ji Ma, Yue Zhang, and Jingbo Zhu. 2014. Punctua-
tion processing for projective dependency parsing.
In ACL.

Marie-Catherine de Marneffe and Chris Manning.
2008. The Stanford typed dependencies representa-
tion. In Coling Workshop on Cross-Framework and
Cross-Domain Parser Evaluation.

Dominick Ng and James Curran. 2015. Identifying
cascading errors using constraints in dependency
parsing. In ACL.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Giilsen Eryigit, Sandra Kiibler, Svetoslav
Marinov, and Erwin Marsi. 2007. MaltParser: A
language-independent system for data-driven depen-
dency parsing. Natural Language Engineering,
13(2):95-135.

Madeline Remse, Mohsen Mesgar, and Michael
Strube. 2016. Feature-rich error detection in scien-
tific writing using logistic regression. In BEA.

Valentin Spitkovsky, Hiyan Alshawi, and Dan Jurafsky.
2011. Punctuation: Making a point in unsupervised
dependency parsing. In CoNLL.

Evaluating Textual Representations through Image Generation

Graham Spinks
Department of Computer Science
KU Leuven, Belgium

Marie-Francine Moens
Department of Computer Science
KU Leuven, Belgium

graham.spinks@cs.kuleuven.be sien.moenslcs.kuleuven.be

Abstract

We present a methodology for determining the
quality of textual representations through the
ability to generate images from them. Contin-
uous representations of textual input are ubig-
uitous in modern Natural Language Process-
ing techniques either at the core of machine
learning algorithms or as the by-product at
any given layer of a neural network. While
current techniques to evaluate such represen-
tations focus on their performance on partic-
ular tasks, they don’t provide a clear under-
standing of the level of informational detail
that is stored within them, especially their abil-
ity to represent spatial information. The cen-
tral premise of this paper is that visual inspec-
tion or analysis is the most convenient method
to quickly and accurately determine informa-
tion content. Through the use of text-to-image
neural networks, we propose a new technique
to compare the quality of textual representa-
tions by visualizing their information content.
The method is illustrated on a medical dataset
where the correct representation of spatial in-
formation and shorthands are of particular im-
portance. For four different well-known tex-
tual representations, we show with a quanti-
tative analysis that some representations are
consistently able to deliver higher quality vi-
sualizations of the information content. Addi-
tionally, we show that the quantitative analy-
sis technique correlates with the judgment of a
human expert evaluator in terms of alignment.

1 Introduction

In this paper, a method is proposed to evaluate the
quality of a textual representation by conditioning
an image generation network on it.

Neural networks implicitly construct represen-
tations of a textual input by learning which fea-
tures are important for the task at hand. It is not
immediately possible however to assess the level

of detail and structure that is retained in such a rep-
resentation. Many systems often complement or
replace the input with pre-trained representations
that have the advantage of being constructed with
a larger unlabeled corpus. Depending on the task,
this practice sometimes significantly improves the
performance of the network (Turian et al., 2010).
On the one hand, this is due to the use of a larger
unlabeled corpus which reduces data sparsity and
thus improves generalization accuracy. On the
other hand, representations often contain higher-
level features that are fundamental for the task
they are trained for. A neural network in a sep-
arate task can thus rely on those features without
having to discover them all over again.

As the field of Natural Language Processing ad-
vances and machine learning models expand to
include multimodal information, the importance
of understanding the level of detail and informa-
tion that is retained in a textual representation only
grows. Obtained representations can be employed
in additional tasks (for example generation, trans-
lation, summarization, etc.) depending on their
ability to capture certain types of information. The
medical domain in particular might benefit from a
better understanding of representations as the in-
dustry moves to adopt deep learning methods in
increasingly intricate applications and researchers
attempt to extract and utilize more complex infor-
mation structures. An example is spatial informa-
tion which is an important quantity in many natu-
ral language applications, yet no explicit method-
ology exists that indicates to what extent that in-
formation is present in textual representations. In
many medical settings, a correct understanding
and representation of such information is crucial.
In thorax radiography, which is the focus of this
paper, textual captions often include detailed find-
ings which relate to specific areas in an X-Ray.
Clinical texts in general, add an extra level of com-

Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 30-39
Brussels, Belgium, November 1, 2018. (©2018 Association for Computational Linguistics

plexity as they often lack syntactic structure and
employ many shorthands.

Images differ from texts in the sense that the
retained information and generalization of a rep-
resentation are immediately apparent for a human
observer. It is not surprising that the human per-
ceptual score’ is a frequently used metric to eval-
uate image generation systems (Borji, 2018). In
this paper we propose a novel method to assess
the quality of textual representations. By creat-
ing images from different textual representations
we show that some representations lack the nec-
essary information to lead to detailed high-quality
images. The textual representations are evaluated
both by comparing the quality of the produced im-
ages compared to the images in the test data, as
well as the alignment between images and cap-
tions. The outcome is determined both by a quali-
tative (human perceptual scores) as well as a quan-
titative (divergence scores) measure. To calculate
the divergence scores, we rely on the methodol-
ogy that estimates distance between two distribu-
tions as introduced by (Danihelka et al., 2017) and
extend it to estimate how well image and text are
aligned in the generated content.

As we show in the results, text-to-image archi-
tectures are indeed suitable to get an immediate
visual estimate of the quality of the representa-
tion and the information contained within. We
will evaluate several common textual represen-
tations that were constructed with unsupervised
learning techniques on both a relatively straight-
forward conditional GAN as well as on a more ad-
vanced StackGan (Zhang et al., 2017) which uses
several stages and a conditioning mechanism that
augments the textual representation.

The contributions of this paper are:

e The formulation of a methodology to visual-
ize and evaluate the information and quality
of different textual representations.

e The extension of a GAN evaluation measure
to evaluate alignment of output with condi-
tional information.

2 Motivation and background

To understand the motivation of this paper, it is
necessary to understand some background on the
different types of textual representations and why
better evaluation methods are necessary. As we

31

use text-to-image models for evaluation purposes,
we also discuss related research in that area.

2.1 Textual Representations

A textual representation is usually a vector associ-
ated with a piece of text, which may be a charac-
ter, word, sentence, paragraph or document. In its
simplest form, a representation can be a symbolic
ID, such as in a one-hot vector where each dimen-
sion represents an ID. This is essentially a discrete,
symbolic representation that is very sparse in in-
formation as by definition only one dimension is
non-zero. They are also somewhat arbitrary in the
sense that two texts that are near each other in the
code space don’t necessarily share a similar mean-
ing or syntax.

More efficient methods assign particular hand-
engineered or automatically extracted features to
a lower-dimensional vector. One feature can be
stored in exactly one dimension or it could be
shared over many. In this paper we will focus
on the latter, also referred to as distributed rep-
resentations or word embeddings, which is the
traditional method to represent sentences in re-
cent neural network related research. They are
dense, low-dimensional and real-valued (Turian
etal., 2010). Texts that contain similar concepts or
meaning for a typical task end up near each other
in such a distributed representation space which
serves as a proxy for generalized, semantic infor-
mation storage. Word embeddings can be built
with unsupervised training, for example by lever-
aging positional information of texts in a corpus;
with weakly supervised training, for example in an
adversarial setting; or with supervision of output
labels. While this paper focuses on unsupervised
and weakly supervised methods only, the methods
that are described here are applicable to supervised
representations as well.

Well-known methods of creating word embed-
dings are the word2vec algorithms, introduced by
Mikolov et al. (2013a). Word embeddings are usu-
ally constructed with neural networks that predict
the context of a word in a text document. They are
able to scale to large training corpora, thus rep-
resenting large amounts of information and fea-
tures in a relatively small amount of dimensions.
While word2vec word embeddings solely operate
on the word level, extensions have been made that
include information at the level of characters (e.g.
char-CNN-RNN (Kim et al., 2016)), or at higher

levels such as sentences, paragraphs or documents.
(e.g. skipthought vectors (Kiros et al., 2015) or
doc2vec (Le and Mikolov, 2014)).

While these methods usually are trained on
tasks that reproduce the context of a textual com-
ponent, autoencoders (AE) are trained to recre-
ate the original text in its entirety while implic-
itly learning a compact, distributed representation
as well of the input text along the way. A re-
cent method that builds on the autoencoder ap-
proach is an Adversarially Regularized Autoen-
coder (ARAE) (Kim et al., 2017). Here, the repre-
sentation is built explicitly from an encoder that
is trained as part of an autoencoder as well as
a conventional Generative Adversarial Network
(GAN). Such representations contain semantic in-
formation about the sentence but also discrimina-
tive information that allows the adversarial net-
work to distinguish real samples from fake ones.
As a result, a smoother semantic transition is ap-
parent while traversing the representation space
when compared to an autoencoder. Spinks and
Moens (2018) have applied this technique to cre-
ate textual representations of X-Ray captions and
generate textual output with low perplexity.

The quality of distributed vectors can be as-
sessed with similarity tasks that give a rough
measure of semantic and syntactic information
(Mikolov et al., 2013a,c) but studies by Faruqui
etal. (2016) and Linzen (2016) indeed suggest that
the use of word similarity tasks for the evaluation
of word vectors is problematic and may lead to
incorrect inferences. Schnabel et al. (2015) have
evaluated embeddings with a range of methods,
both intrinsic, such as semantic and syntactic sim-
ilarity, and extrinsic, such as noun phrase chunk-
ing and sentiment classification. For the extrin-
sic tasks, they found that different representations
performed best for different tasks, suggesting that
perhaps there isn’t one optimal representation for
all tasks. Such studies suggest that better method-
ologies and more research is needed into meth-
ods that accurately assess the value of different
continuous representations. This paper addresses
this by focusing on the evaluation of the informa-
tion content of the representation rather than any
task-oriented metric. Lazaridou et al. (2015) also
worked towards a visualization method for text
representations by averaging images of the near-
est neighbors vectors after a cross-modal mapping.
Contrary to this work, their approach did not in-

32

clude any evaluation mechanism of the outcome
and only focused on individual words.

In this paper, we construct distributed repre-
sentations of sentences with several unsupervised
methods mentioned above. Subsequently, we pro-
pose a new methodology to evaluate the quality of
the learned word embeddings by generating im-
ages from them, thus visualizing the level of detail
and information retained in the different embed-
dings. To understand our methodology, it is use-
ful to discuss some background on text-to-image
models and, more in general, generative models.

2.2 Generative models

Recent text-to-image models rely on advances in
generative models, which are probabilistic mod-
els that estimate a distribution given a certain in-
put. Such generative systems have shown impres-
sive progress in the creation of realistic data, most
notably with Generative Adversarial Networks
(GANSs) (Goodfellow et al., 2014). In the origi-
nal formulation, GANs are trained by alternately
improving a generator network, G, which aims to
create realistic samples and a discriminator net-
work, D, which tries to distinguish real samples
from generated ones. As training such an archi-
tecture tends to be unstable, several improvements
have been proposed, for example the Wasserstein
GAN (WGAN) (Arjovsky et al., 2017). In this for-
mulation the discriminator is replaced by a critic,
f, that is trained to approximate the Earth-Mover
distance (EM). The EM is an estimate of the mini-
mum amount of effort that is necessary to displace
one distribution to another (Arjovsky et al., 2017).
The loss function to train a GAN with the Wasser-
stein Distance is presented in Equation 1.

min W(G) =

]
min max Bq-p, [f(2)] = Eep, [f(2)] (1)

where G is the generator, f is the critic, W is the
Wasserstein distance, and P, and P, are the real
and generated data distributions respectively. To
ensure that the approximation to the earth mover
distance is valid, the critic f should be enforced to
be 1-Lipschitz continuous. (Arjovsky et al., 2017)
achieve this by clipping the critic weights between
[—c, ¢], where c is typically smaller than 1.
Extensions to the GAN setup have been
proposed, such as conditional adversarial net-
works (Odena et al.,, 2016), and progressively

grown GANs (Zhang et al., 2017; Karras et al.,
2017) which have made detailed high resolu-
tion category-dependent image generation possi-
ble. During the training of conditional GANS, the
class or label is passed along to both generator
and discriminator so that the networks implicitly
learn relevant auxiliary information which leads
to more detailed outputs. Progressively grown
GANSs rely on low-resolution outputs to learn out-
lines and structures of images that are refined into
smooth visual output at higher resolutions. This
approach is also the essence of cross-modal text-
to-image architectures. Zhang et al. (2017), for
example, have demonstrated how to produce real-
istic images conditioned on textual captions with
a progressive GAN network called StackGAN.

In this paper, we use the StackGAN to visual-
ize textual representations, as well as a simplified
text-to-image architecture based on a GAN. The
information and quality of the produced images al-
low us to evaluate the quality of the different tex-
tual representations. With that goal we will dis-
cuss some methods to evaluate the visual output
of such text-to-image GANS.

2.3 Evaluation measures

As we produce images from text to determine
the quality of the textual representations, accurate
evaluation measures are needed to assess the gen-
erated images. We focus on evaluation measures
for GANS as it is the only type of architecture that
is used to create images in this paper.

Besides human perceptual scores, some recent
advances have been made to assess the quality of
the distribution of the generated output of GANS.
Some of the most widely adopted measures are
the Inception Score (IS) (Salimans et al., 2016)
and the Fréchet Inception Distance (FID) (Heusel
et al., 2017). Both measures have a reasonable
correlation with image quality but also contain un-
desirable properties as explained by Borji (2018).
One large problem is that both use a third-party
network that was trained on a different dataset to
measure the quality of the generated data. It there-
fore assumes that the distribution of the dataset
used in the generation task is similar to the dataset
that the third-party network was trained on. This
assumption is often not fulfilled, particularly if
specialized medical datasets are used.

To solve these issues, Danihelka et al. (2017)
propose using divergence and distance functions

33

that are normally used for training a GAN. Im et al.
(2018) show that these metrics exhibit consistency
across various models and find that they better
reflect human perceptual scores than the IS and
FID. To calculate how well the generated distribu-
tion has approached the data distribution, an inde-
pendent critic is trained until convergence to dis-
tinguish between generated samples and samples
from the validation set. The WGAN loss is used
and the weights of the original generator are no
longer updated. When applied to output images,
the Wasserstein distance thus can give an estimate
of the divergence between the generated and real
images. This quantity is expressed as Wyal_image
in Equation 2.

unal,image<G7 Pr,’u) -
H;?X(Ewpr,v [/1(#)] = Ez~p, [/1(Z)]) (D)

where P, refers to the real distribution of the val-
idation data.

Additionally, by evaluating the model that is
trained in Equation 2 on the training and test set,
Danihelka et al. (2017) suggest a method to esti-
mate whether overfitting has occurred. Indeed, if
the model generalizes well to the unseen examples
in the testset, the expected values in Equation 3
should be roughly the same. In this equation P, ;.
and P, refer to the real distributions of the test
and training set respectively.

E[unal,image(Gy Pr,te)] -

E[unal,image(Ga Pr,tr)] (3)

While this method allows us to judge the output
quality of the images, and by extension the tex-
tual representations, in the following section we
will explain how our methodology extends this ap-
proach in order to evaluate the alignment between
image and text.

3 Method

This paper proposes a methodology that evalu-
ates the quality of textual representations by vi-
sualizing them with text-to-image models. This is
achieved in three separate stages as described in
the following subsections.

3.1 Train and create a textual representation

In this paper 4 different textual representations
are created by training on the captions of the

1. Create Text
Representations

2. Visualize with
Text-to-Image model

3. Evaluate
Output

: - E ——
| word2vec sum | - — 3 X1 : Stage-1

- X1 ' StackGAN

P ¢ . ‘
| word2vec concat | Text (. N f_»

Representation

| autoencoder | _-10 ---------------)_(-------------

i Gy 2 1 Stage-2
| ARAE | i X f. X2 ! StackGAN

Dz |

"the pulmonary vasculature appears normal .

the heart size is enlarged . no bony abnormalities .
lungs are otherwise clear bilaterally .

no pleural effusions or pneumothorax”

Figure 1. Overview of the methodology. A textual representation is first trained and then fed as a con-
ditional input to a text-to-image model, in this figure a StackGAN. The textual representation is fed to
both the first and second stage of an image StackGAN with the goal of creating low- and high-resolution
images x; and 3 respectively. From the representation, the augmented conditioning embedding ¢ is
formed. In a final step, the visual output is evaluated.

training set using unsupervised training methods.
As these representations are compared afterwards,
they each need to have the same, fixed dimension.

For the first 2 representations, the typical
word2vec skip-gram word embeddings are used
to build the vectors. A representation for a sen-
tence is built by respectively summing and con-
catenating the individual word embeddings for the
entire sequence. Such a comparison is interesting
as summing (or averaging) word vectors allows
to use high-dimensional word representations, yet
sacrifices word order. Concatenating on the other
hand, requires the use of low-dimensional word
embeddings as the sentence dimension is fixed, but
maintains word order and has been shown to work
well at the input of convolutional networks (Kim,
2014), such as the text-to-image models used in
this paper.

Additionally, the hidden state representation of
an autoencoder is built. The autoencoder, that con-
sists of a 1-layer LSTM encoder and a 1-layer
LSTM decoder, is trained to recreate the input text
with a cross-entropy loss at the word-level.

Finally, we also use the representation produced
by an ARAE, as in section 2.1. The ARAE con-
tains a 1-layer LSTM encoder and 1-layer LSTM
decoder. The generator and discriminator consist
of 3-layer feedforward networks.

3.2 Create images from text

From these representations, images are created
with a text-to-image model, which can be a simple

34

conditional GAN or a more complex StackGAN.
In the latter, a textual representation ¢ is fed into
a fully-connected net that creates a mean p and
a variance o from which augmented conditional
representations ¢ are generated. The Kullback-
Leibler divergence (KL-loss) is used to coerce ¢ to
approach a normal distribution A/(0, I). This en-
sures smoothness between different input texts and
avoids overfitting when generating images from
captions (Doersch, 2016; Larsen et al., 2015). The
conditional vector ¢ is then concatenated to a noise
vector 2/, sampled from a normal distribution, and
fed to the generator.

Such a StackGAN model is trained in two
stages: at a first stage the features of real and
generated images are matched to produce low-
resolution images that lack detail. During the sec-
ond stage, the generator produces larger images,
conditioned on both the augmented conditional
vector ¢ as well as the image output of the first
stage. The training is broken up into the maxi-
mization of the loss of D and the minimization of
the loss of GG as shown in Equations 4 and 5 for the
first stage. Note that a traditional GAN formula-
tion is used in the StackGAN model.

max Lp, =Ez ~p,[logD1(x1,t)]+
1

Eznp. t~pgllog(1 — D1(G1(2,¢),1))] (4)

min La, =
Ezwpz,twpd [log(l - Dl (Gl (Za 6)7 t))]+
ADgp(N (1 (t), 1(1))[IN(0, 1)) (5)
where p, and p4 represent the random normal and
data distribution respectively. ¢ is the textual rep-
resentation and A is a regularization parameter to
balance the loss between the two terms. Subfix 1
indicates that these equations relate to stage 1.
Note that the StackGAN model is distinct from
more conventional text-to-image architectures not
only in the sense that the former progressively
constructs higher resolution images but also be-
cause of the conditioning augmentation. This
mechanism is particularly important for this exper-
iment, as it essentially augments the different tex-
tual representations. For the simple text-to-image
GAN, which we refer to as TTI-GAN, we use
a GAN architecture without separate stages that
passes the textual representation to both the gen-
erator and discriminator without modifications.
Both generator and discriminator for all text-to-
image architectures (i.e. the TTI-GAN and both
stage-I and stage-II StackGAN) consist of a series
of convolutional up- and down-sampling blocks
respectively. As the text embedding ¢ is passed
to the discriminator it is compressed with a fully-
connected network and replicated to match the di-
mensions of the image.

3.3 Evaluate the output quality

Evaluating the output quality will let us judge the
textual representation quality. In order to do so, we
can rely on Equation 2 to calculate Wyya1 image-
However, we would also like to have a rough idea
of how well the conditional information is assimi-
lated in the output. We therefore extend the pre-
viously mentioned setup to calculate the diver-
gence between an additional pair of distributions.
Watign_im_tz¢+ in Equation 6 measures the distance
between the aligned image-text distributions by
also feeding the conditional information, in this
case the textual representations, to the critic.

Walign,im,txt(Gp Pr,v)
max(Erp., [f2(2,)] = Bapy [f2(Z,)]) - (6)

where c is conditional information that corre-
sponds to the current data sample. fs is distinct
and independent from the critic f; in Equation 2

35

but is also trained until convergence on the vali-
dation set. The intuition behind Equation 6 is that
Walign_im_tt 1S @ measure of the distance between
the real and generated distributions with their con-
ditional information. Thus, Wiign_im_tz+ should
be smaller for models that take the conditional in-
formation into account when creating the output.

Note that the value of Woign_ im_tat also de-
pends on the chosen textual representation and can
therefore not be used to evaluate alignment of the
TTI-GAN model across different representations.
It can be used in the case of the StackGAN how-
ever as the representations are coerced to approach
a normal distribution with the conditioning aug-
mentation mechanism.

We would also like to get an estimate for the
amount of overfitting that occurs for each textual
representation. For this we rely on the insights of
Equation 3. In Equations 7 and 8 we suggest a
simple method to compare how much overfitting
occurs on both the quality of the images itself, as
well as on the alignment to the captions. By tak-
ing the quotient of the expected values of the eval-
uation of Wyyai image and Waiign im_tat» W€ can
compare how much overfitting happened for each
entity.

= E[unal,image(G, Pr,te)]/
E[unal,image(G’ Pr,tr)] -

O qual_image
1
(N
Oalign_im_tat = EWaiign im tat(G, Pre)]/
EWaiign_im_tat (G, Prr)] — 1
®)

The entire setup of the methodology is illustrated
in Figure 1 where the StackGAN architecture is
used as the text-to-image architecture.

4 [Experiments

The used dataset is the chest X-Ray dataset of
the National Library of Medicine, National Insti-
tutes of Health, Bethesda, MD, USA (Demner-
Fushman et al., 2015). It contains the findings
of the frontal and lateral X-Ray for 3851 patients.
For this work only the frontal X-Rays are retained.
Random crops are performed during training for
data augmentation. As the content in the find-
ings is invariant to the order of the sentences,
up to 4 captions are created for each X-Ray by
selecting different sentences or a different sen-
tence order. Captions that contain less than 30

Representation | Wyyai_image o

w2V sum 0.598 0.033
w2v concat 0.239 0.049
AE (%) 0.243 0.032
ARAE (*) 0.219 0.072

Table 1. Quantitative results of 10 runs for the
TTI-GAN visualization method for each of the
representations. A lower Wyyai image implies a
better image quality. (*) For both the autoencoder
and ARAE, an outlier was removed.

words are padded to equal length, with a maxi-
mum of 30 words. All words are lowercase and
words with a frequency of less than 5 occurrences
are removed and replaced by an out-of-vocabulary
marker. While the dataset also contains diagnosis
labels for each image, they are not used in this pa-
per. The dataset is divided into training, validation
and test set with 80%, 10% and 10% of the data
respectively.

For the experiments we first create four differ-
ent textual representations on the captions of the
training set, as detailed in section 3.1. Those rep-
resentations are referred to as word2vec (sum),
word2vec (concat), autoencoder and ARAE. To
illustrate the methodology, we set the fixed di-
mension of each representation to 300, which is a
standard dimension for such embeddings, initially
used by Mikolov et al. (2013b) in their analysis of
distributed vectors. For the autoencoder and the
ARAE, training is stopped when the validation er-
ror of the reconstruction is minimal.

To generate images from the text, the TTI-
GAN and StackGAN models are used as explained
in section 3.2. The latter produces images with
higher resolution than the former approach. This
is important as a higher resolution is required to
make an accurate assessment about the alignment
of the X-Ray images to the captions. The expected
outcome is that a textual representation that main-
tains sequential information performs better than
one that does not. Additionally we expect a code
that lies on a regularized smooth space, such as
the code produced by the ARAE, to be more use-
ful than a code that does not.

Finally, we perform two types of experiments,
for which the concrete setup is as follows.

1. As GAN training can be unstable, the TTI-
GAN is trained 10 times for each represen-

36

Representation unal _image Wali gn_im_trt
w2V sum 2.242 2.239
w2v concat 2.343 2.360
AE 2.360 2.344
ARAE 2.229 2.279

Table 2. Quantitative results for the trained Stage-
2 StackGAN visualization method for each of
the representations. A lower Wyuai image and
Walign_im_tzt imply a better image quality and
alignment respectively.

tation. From the evaluation of each, we ob-
tain measures for Wyyai image> Ogqualimage
and Oglign_im_tz+ Which allow us to compare
the value of the different representations. The
TTI-GAN in our setup produces images with
a resolution of 64x64 pixels.

. For the StackGAN, we train one model for
each representation, and train an indepen-
dent critic 5 times for each model. As
GAN training can be quite unstable, this
experiment does not allow us to judge the
value of the representations from just one
run. However, we compare our estimates for
unal,image and Walign,im,t:vt to the evalua-
tion of a trained clinician, to confirm that our
methodology correlates with human judg-
ment, both in terms of quality and alignment.
For the first stage of the StackGAN we pro-
duce 64x64 pixel images, while the second
stage outputs higher resolution 256x256 pixel
images. For this experiment, A was set to
0.05 and c was set to 0.01.

The text-to-image architectures are each trained
during 120 epochs for each of the textual represen-
tations of the captions in the training set. The im-
age quality is then assessed on the images that are
generated from the captions of the validation and
test set. This ensures that we check whether the
learned representations can generalize well to cap-
tions that were never seen during their construc-
tion.

5 Results

In Table 1, the quality of the generated images
of the TTI-GAN model are presented for each of
the representations. Over the ten performed runs,
the TTI-GAN training collapsed once for both the

Textual Results
Representation #C/HN #U
Ground Truth 20/1=20 4

w2V sum 15/4=3.75 6

w2v concat 12/8=15 5

AE 8/8=1.0 9

ARAE 11/7=1.57 7

Table 3. Qualitative assessment by clini-

cians for the produced images of the Stack-
GAN Stage-2 model. Are the caption and the
image congruent? (Congruent(C)/Not congru-
ent(N)/Unclear(U). Higher values of the propor-
tion #C/#N indicate better alignment.

ARAE and autoencoder representations. As those
runs were clear outliers originating from the col-
lapse of GAN training, they were removed from
the results in Table 1. As expected, the ARAE
results do appear to lead to the best overall im-
age quality, followed by the word2vec (concat)
and autoencoder models. The word2vec (sum)
consistently leads to worse solutions. In terms
of Ogual_image> the word2vec (concat) model ex-
periences less overfitting in terms of image qual-
ity than the other representations (11.4% versus
15 — 50%), suggesting that such concatenated
word2vec representations, that maintain word or-
der, generalize well.

While the Stage-2 StackGAN results in Table
2 show that the ARAE representations achieve
the highest image quality again, they don’t en-
tirely agree with the TTI-GAN results. This can
be attributed to several causes: 1. The results
for Stage-2 StackGAN only include results for 1
trained model as we would like to compare the
metrics for such a model with the human judg-
ment scores; 2. The Stage-2 StackGAN training
produces more detailed images of higher resolu-
tion so consistent training is more difficult; 3. The
augmented conditioning adds to the original rep-
resentation, likely making the outcome for each
representation more similar. With the exception of
the autoencoder representation, the outcome of the
Stage-2 model, which relies on the outcome of the
first stage, exhibit a lot more overfitting in terms
of both Ogual_image ad Oalign_im_tz+ With values
that range from 126% to 498%.

In order to assess the validity of the quantitative
assessment, a trained clinician carries out a visual
assessment of the produced image samples. We

37

randomly pick 25 produced images of the Stack-
GAN stage-2 models for each of the textual repre-
sentations. We also selected 25 true caption-image
pairs to compare the models to. The evaluator was
asked to determine for each sample:

o Are the caption and the generated image con-
gruent or conflicting? (Congruent/ Conflict-
ing/ Unclear)

The evaluator was also asked for each image if
it was clearly not a real but generated X-Ray, but
didn’t find that to be the case for any of the images.
This reflects the fact that all Wy,41_image appear to
be quite similar in Table 2. Note that while our
model produces an output of 256 by 256 pixels,
a higher resolution is still desirable to make accu-
rate judgments about the content of such X-Rays.
In cases where the clinician found that additional
information would be necessary to judge whether
the alignment is correct, the clinician was able to
respond with “unclear”. Note that this does not
mean that the quality of the image was bad.

The results are shown in Table 3. From the re-
sults, we find that indeed the word2vec summa-
tion model and the ARAE model, that obtained
the best alignment scores Wjign im 2+ according
to our quantitative measures, also appear to be
the best aligned in the human judgment. While
the word2vec concatenation model achieved a
slightly worse Wjign_im_tz¢ score, the clinician
still judged its alignment to be better than the au-
toencoder model for the selected samples, perhaps
reflecting its slightly improved Wyyai image OVer
the autoencoder model.

In Figure 1, a generated image of stage-I and
stage-II is presented along the architecture. While
the Stage-I images capture the structure and main
features of the X-Rays, there is a clear improve-
ment in quality for the stage-II images.

6 Conclusion

In this paper, we have proposed a method to de-
termine the quality of textual representations by
visualizing them with text-to-image models. Af-
ter testing our approach on four different unsuper-
vised text-to-image models, it appears that textual
representations that retain word order and lie on a
smooth representation space, lead to the best qual-
ity of image output. We proposed a method to
judge the alignment of the captions with the vi-
sual output which correlates with the judgment of

a trained clinician. While only unsupervised rep-
resentations were used in this paper, the method-
ology can be applied to other types of textual rep-
resentations. The results in this paper constitute
a new methodology to evaluate textual represen-
tations through visualization and offer an inter-
esting path for future work. The application of
the method to more complex sentences, different
fields or topics as well as the development of al-
ternative alignment measures are interesting pos-
sibilities for such research.

Acknowledgments

We thank Dr. Erwin Stroker from the UZ Brussel-
VUB for sharing his expertise in the qualitative as-
sessment of generated samples.

References

Martin Arjovsky, Soumith Chintala, and Léon Bot-
tou. 2017. Wasserstein gan. arXiv preprint
arXiv:1701.07875.

Ali Borji. 2018. Pros and cons of gan evaluation mea-
sures. arXiv preprint arXiv:1802.03446.

Ivo Danihelka, Balaji Lakshminarayanan, Benigno
Uria, Daan Wierstra, and Peter Dayan. 2017. Com-
parison of maximum likelihood and gan-based train-
ing of real nvps. arXiv preprint arXiv:1705.05263.

Dina Demner-Fushman, Marc D Kohli, Marc B Rosen-
man, Sonya E Shooshan, Laritza Rodriguez, Sameer
Antani, George R Thoma, and Clement J] McDon-
ald. 2015. Preparing a collection of radiology ex-
aminations for distribution and retrieval. Journal
of the American Medical Informatics Association,
23(2):304-310.

Carl Doersch. 2016. Tutorial on variational autoen-
coders. arXiv preprint arXiv:1606.05908.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi,
and Chris Dyer. 2016. Problems with evaluation of
word embeddings using word similarity tasks. arXiv
preprint arXiv:1605.02276.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information
Processing Systems, pages 2672-2680.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, Giinter Klambauer, and Sepp
Hochreiter. 2017. Gans trained by a two time-scale
update rule converge to a nash equilibrium. arXiv
preprint arXiv:1706.08500.

38

Daniel Jiwoong Im, He Ma, Graham Taylor, and
Kristin Branson. 2018. Quantitatively evaluating
gans with divergences proposed for training. arXiv
preprint arXiv:1803.01045.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko
Lehtinen. 2017. Progressive growing of gans for

improved quality, stability, and variation. arXiv
preprint arXiv:1710.10196.
Yoon Kim. 2014. Convolutional neural net-

works for sentence classification.
arXiv:1408.5882.

arXiv preprint

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In AAAI pages 2741-2749.

Yoon Kim, Kelly Zhang, Alexander M Rush, Yann
LeCun, et al. 2017. Adversarially regularized au-
toencoders for generating discrete structures. arXiv
preprint arXiv:1706.04223.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In Ad-
vances in Neural Information Processing Systems,
pages 3294-3302.

Anders Boesen Lindbo Larsen, Sgren Kaae Sgnderby,
Hugo Larochelle, and Ole Winther. 2015. Autoen-
coding beyond pixels using a learned similarity met-
ric. arXiv preprint arXiv:1512.09300.

Angeliki Lazaridou, Dat Tien Nguyen, and Marco Ba-
roni. 2015. Do distributed semantic models dream
of electric sheep? visualizing word representations
through image synthesis. In Proceedings of the
Fourth Workshop on Vision and Language, pages
81-86.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-

national Conference on Machine Learning, pages
1188-1196.

Tal Linzen. 2016. Issues in evaluating seman-

tic spaces using word analogies. arXiv preprint
arXiv:1606.07736.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111-3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746-751.

Augustus Odena, Christopher Olah, and Jonathon
Shlens. 2016. Conditional image synthesis
with auxiliary classifier gans. arXiv preprint
arXiv:1610.09585.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen. 2016.
Improved techniques for training gans. In Advances
in Neural Information Processing Systems, pages
2234-2242.

Tobias Schnabel, Igor Labutov, David Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 298-307.

Graham Spinks and Marie-Francine Moens. 2018.
Generating continuous representations of medical
texts. NAACL HLT 2018, page 66.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 384—394. Association for
Computational Linguistics.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang,
Xiaolei Huang, Xiaogang Wang, and Dimitris
Metaxas. 2017. Stackgan: Text to photo-realistic
image synthesis with stacked generative adversar-
ial networks. In IEEE Int. Conf. Comput. Vision
(ICCV), pages 5907-5915.

39

On the Role of Text Preprocessing in Neural Network Architectures:
An Evaluation Study on Text Categorization and Sentiment Analysis

Jose Camacho-Collados
School of Computer Science
and Informatics
Cardiff University

camachocolladosjlcardiff.ac.uk

Abstract

Text preprocessing is often the first step in
the pipeline of a Natural Language Process-
ing (NLP) system, with potential impact in
its final performance. Despite its importance,
text preprocessing has not received much at-
tention in the deep learning literature. In this
paper we investigate the impact of simple text
preprocessing decisions (particularly tokeniz-
ing, lemmatizing, lowercasing and multiword
grouping) on the performance of a standard
neural text classifier. We perform an extensive
evaluation on standard benchmarks from text
categorization and sentiment analysis. While
our experiments show that a simple tokeniza-
tion of input text is generally adequate, they
also highlight significant degrees of variabil-
ity across preprocessing techniques. This re-
veals the importance of paying attention to this
usually-overlooked step in the pipeline, partic-
ularly when comparing different models. Fi-
nally, our evaluation provides insights into the
best preprocessing practices for training word
embeddings.

1 Introduction

Words are often considered as the basic con-
stituents of texts for many languages, including
English.! The first module in an NLP pipeline is
a tokenizer which transforms texts to sequences of
words. However, in practise, other preprocessing
techniques can be (and are) further used together
with tokenization. These include lemmatization,
lowercasing and multiword grouping, among oth-
ers. Although these preprocessing decisions have

'Note that although word-based models are mainstream
in NLP in general and text classification in particular, recent
work has also considered other linguistic units, such as char-
acters (Kim et al., 2016; Xiao and Cho, 2016) or word senses
(Li and Jurafsky, 2015; Flekova and Gurevych, 2016; Pile-
hvar et al., 2017). These techniques require a different kind
of preprocessing and, while they have been shown effective

in various settings, in this work we only focus on the main-
stream word-based models.

Mohammad Taher Pilehvar
School of Computer Engineering
Iran University of
Science and Technology
pilehvar@iust.ac.ir

been studied in the context of conventional text
classification techniques (Leopold and Kinder-
mann, 2002; Uysal and Gunal, 2014), little at-
tention has been paid to them in the more recent
neural-based models. The most similar study to
ours is Zhang and LeCun (2017), which analyzed
different encoding levels for English and Asian
languages such as Chinese, Japanese and Korean.
As opposed to our work, their analysis was fo-
cused on UTF-8 bytes, characters, words, roman-
ized characters and romanized words as encoding
levels, rather than the preprocessing techniques
analyzed in this paper.

Additionally, word embeddings have been
shown to play an important role in boosting
the generalization capabilities of neural systems
(Goldberg, 2016; Camacho-Collados and Pile-
hvar, 2018). However, while some studies have fo-
cused on intrinsically analyzing the role of lemma-
tization in their underlying training corpus (Ebert
et al., 2016; Kuznetsov and Gurevych, 2018), the
impact on their extrinsic performance when inte-
grated into a neural network architecture has re-
mained understudied.’

In this paper we focus on the role of prepro-
cessing the input text, particularly in how it is
split into individual (meaning-bearing) tokens and
how it affects the performance of standard neural
text classification models based on Convolutional
Neural Networks (LeCun et al., 2010; Kim, 2014,
CNN). CNNs have proven to be effective in a wide
range of NLP applications, including text classifi-
cation tasks such as topic categorization (Johnson
and Zhang, 2015; Tang et al., 2015; Xiao and Cho,
2016; Conneau et al., 2017) and polarity detection

2Not only the preprocessing of the corpus may play an im-
portant role but also its nature, domain, etc. Levy et al. (2015)
also showed how small hyperparameter variations may have
an impact on the performance of word embeddings. However,
these considerations remain out of the scope of this paper.

Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 40-46
Brussels, Belgium, November 1, 2018. (©2018 Association for Computational Linguistics

(Kalchbrenner et al., 2014; Kim, 2014; Dos San-
tos and Gatti, 2014; Yin et al., 2017), which are
the tasks considered in this work. The goal of our
evaluation study is to find answers to the following
two questions:

1. Are neural network architectures (in particu-
lar CNNs) affected by seemingly small pre-
processing decisions in the input text?

. Does the preprocessing of the embeddings’
underlying training corpus have an impact
on the final performance of a state-of-the-art
neural network text classifier?

According to our experiments in topic catego-
rization and polarity detection, these decisions are
important in certain cases. Moreover, we shed
some light on the motivations of each preprocess-
ing decision and provide some hints on how to nor-
malize the input corpus to better suit each setting.

The accompanying materials of this sub-
mission can be downloaded at the follow-
ing repository: https://github.com/pedrada88/
preproc-textclassification.

2 Text Preprocessing

Given an input text, words are gathered as input
units of classification models through tokeniza-
tion. We refer to the corpus which is only tok-
enized as vanilla. For example, given the sentence
“Apple is asking its manufacturers to move Mac-
Book Air production to the United States.” (run-
ning example), the vanilla tokenized text would be
as follows (white spaces delimiting different word
units):

Apple is asking its manufacturers to move
MacBook Air production to the United States .

We additionally consider three simple prepro-
cessing techniques to be applied to an input text:
lowercasing (Section 2.1), lemmatizing (Section
2.2) and multiword grouping (Section 2.3).

2.1 Lowercasing

This is the simplest preprocessing technique
which consists of lowercasing each single token
of the input text:

apple is asking its manufacturers to move
macbook air production to the united states .

41

Due to its simplicity, lowercasing has been a
popular practice in modules of deep learning li-
braries and word embedding packages (Penning-
ton et al., 2014; Faruqui et al., 2015). Despite its
desirable property of reducing sparsity and vocab-
ulary size, lowercasing may negatively impact sys-
tem’s performance by increasing ambiguity. For
instance, the Apple company in our example and
the apple fruit would be considered as identical
entities.

2.2 Lemmatizing

The process of lemmatizing consists of replacing
a given token with its corresponding lemma:

Apple be ask its manufacturer to move Mac-
Book Air production to the United States .

Lemmatization has been traditionally a standard
preprocessing technique for linear text classifica-
tion systems (Mullen and Collier, 2004; Toman
et al., 2006; Hassan et al., 2007). However, it
is rarely used as a preprocessing stage in neural-
based systems. The main idea behind lemmati-
zation is to reduce sparsity, as different inflected
forms of the same lemma may occur infrequently
(or not at all) during training. However, this may
come at the cost of neglecting important syntactic
nuances.

2.3 Multiword grouping

This last preprocessing technique consists of
grouping consecutive tokens together into a single
token if found in a given inventory:

Apple is asking its manufacturers to move
MacBook_Air production to the United_States .

The motivation behind this step lies in the id-
iosyncratic nature of multiword expressions (Sag
et al., 2002), e.g. United States in the exam-
ple. The meaning of these multiword expressions
are often hardly traceable from their individual
tokens. As a result, treating multiwords as sin-
gle units may lead to better training of a given
model. Because of this, word embedding toolkits
such as Word2vec propose statistical approaches
for extracting these multiwords, or directly include
multiwords along with single words in their pre-
trained embedding spaces (Mikolov et al., 2013Db).

3 Evaluation

We considered two tasks for our experiments:
topic categorization, i.e. assigning a topic to a
given document from a pre-defined set of topics,
and polarity detection, i.e. detecting if the senti-
ment of a given piece of text is positive or negative
(Dong et al., 2015). Two different settings were
studied: (1) word embedding’s training corpus and
the evaluation dataset were preprocessed in a simi-
lar manner (Section 3.2); and (2) the two were pre-
processed differently (Section 3.3). In what fol-
lows we describe the common experimental set-
ting as well as the datasets and preprocessing used
for the evaluation.

3.1 Experimental setup

We tried with two classification models. The first
one is a standard CNN model similar to that of
Kim (2014), using ReLU (Nair and Hinton, 2010)
as non-linear activation function. In the second
model, we add a recurrent layer (specifically an
LSTM (Hochreiter and Schmidhuber, 1997)) be-
fore passing the pooled features directly to the
fully connected softmax layer.® The inclusion
of this LSTM layer has been shown to be able
to effectively replace multiple layers of convolu-
tion and be beneficial particularly for large inputs
(Xiao and Cho, 2016). These models were used
for both topic categorization and polarity detection
tasks, with slight hyperparameter variations given
their different natures (mainly in their text size)
which were fixed across all datasets. The embed-
ding layer was initialized using 300-dimensional
CBOW Word2vec embeddings (Mikolov et al.,
2013a) trained on the 3B-word UMBC WebBase
corpus (Han et al., 2013) with standard hyperpa-
rameters*.

Evaluation datasets. For the topic categoriza-
tion task we used the BBC news dataset® (Greene
and Cunningham, 2006), 20News (Lang, 1995),
Reuters® (Lewis et al., 2004) and Ohsumed’.

3The code for this CNN implementation is the same as
in (Pilehvar et al., 2017), which is available at https://github.
com/pilehvar/sensecnn

4Context window of 5 words and hierarchical softmax.

Shttp://mlg.ucd.ie/datasets/bbc.html

Due to the large number of labels in the original Reuters
(i.e. 91) and to be consistent with the other datasets, we re-
duce the dataset to its 8 most frequent labels, a reduction al-
ready performed in previous works (Sebastiani, 2002).

"ftp://medir.ohsu.edu/pub/ohsumed

42

Dataset Type Labels #of docs Eval.
) BBC News 5 2,225 10-cross
= | 20News News 6 18,846 Train-test
8 Reuters News 8 9,178 10-cross

Ohsumed Medical 23 23,166 Train-test
» | RTC Snippets 2 438,000 Train-test
E IMDB Reviews 2 50,000 Train-test
< | PLOS Snippets 2 10,662 10-cross
3 | PLO4 Reviews 2 2,000 10-cross
&~ | Stanford Phrases 2 119,783 10-cross

Table 1: Evaluation datasets for topic categoriza-
tion and polarity detection.

PL04 (Pang and Lee, 2004), PL05® (Pang and
Lee, 2005), RTC?, IMDB (Maas et al., 2011) and
the Stanford sentiment dataset'® (Socher et al.,
2013, SF) were considered for polarity detec-
tion. Statistics of the versions of the datasets
used are displayed in Table 1.!'' For both tasks
the evaluation was carried out either by 10-fold
cross-validation or using the train-test splits of the
datasets, in case of availability.

Preprocessing. Four different techniques (see
Section 2) were used to preprocess the datasets as
well as the corpus which was used to train word
embeddings (i.e. UMBC). For tokenization and
lemmatization we relied on Stanford CoreNLP
(Manning et al., 2014). As for multiwords, we
used the phrases from the pre-trained Google
News Word2vec vectors, which were obtained us-
ing a simple statistical approach (Mikolov et al.,
2013b).1

3.2 [Experiment 1: Preprocessing effect

Table 2 shows the accuracy'? of the classification
models using our four preprocessing techniques.
We observe a certain variability of results depend-
ing on the preprocessing techniques used (aver-

8Both PL04 and PLO5 were downloaded from http:/
www.cs.cornell.edu/people/pabo/movie-review-data/

*http://www.rottentomatoes.com

1%We mapped the numerical value of phrases to either neg-
ative (from O to 0.4) or positive (from 0.6 to 1), removing the
neutral phrases according to the scale (from 0.4 to 0.6).

"For the datasets with train-test partitions, the sizes of the
test sets are the following: 7,532 for 20News; 12,733 for
Ohsumed; 25,000 for IMDb; and 1,000 for RTC.

2For future work it would be interesting to explore more
complex methods to learn embeddings for multiword expres-
sions (Yin and Schiitze, 2014; Poliak et al., 2017).

BComputed by averaging accuracy of two different runs.
The statistical significance was calculated according to an un-
paired t-test at the 5% significance level.

Topic categorization

Polarity detection

Preprocessing BBC 20News Reuters Ohsumed RTC IMDB PLO05 PL04 SF

Vanilla 94.6 89.2 93.7 35.3 832 875 76.3 5871 91.2
z Lowercased 94.8 89.8 94.2 36.0 83.0 g4.2F 76.1 59.6f 91.1
O | Lemmatized 95.4 89.4 94.0 35.9 83.1 86.87 758" 642 912

Multiword 95.5 89.6 93.4f 3437 83.2 87.9 77.0 59.1T 91.2
Z | Vanilla 97.0 90.7 93.1 30.81 84.8 88.9 79.1 714 87.1
% | Lowercased 96.4 90.9 93.0 37.5 84.0 883t 79.5 733 87.1
4 | Lemmatized 95.87 90.5 93.2 37.1 844 8771 7187 72.6 86.8f
% | Multiword 96.2 89.81 92.7 29.01 84.0 88.9 79.2 67.0f 873

Table 2: Accuracy on the topic categorization and polarity detection tasks using various preprocessing
techniques for the CNN and CNN+LSTM models. T indicates results that are statistically significant with

respect to the top result.

age variability'* of £2.4% for the CNN+LSTM
model, including a statistical significance gap in
seven of the nine datasets), which proves the in-
fluence of preprocessing on the final results. It is
perhaps not surprising that the lowest variance of
results is seen in the datasets with the larger train-
ing data (i.e. RTC and Stanford). This suggests
that the preprocessing decisions are not so impor-
tant when the training data is large enough, but
they are indeed relevant in benchmarks where the
training data is limited.

As far as the individual preprocessing tech-
niques are concerned, the vanilla setting (tokeniza-
tion only) proves to be consistent across datasets
and tasks, as it performs in the same ballpark as
the best result in 8 of the 9 datasets for both mod-
els (with no noticeable differences between topic
categorization and polarity detection). The only
topic categorization dataset in which tokenization
does not seem enough is Ohsumed, which, un-
like the more general nature of other categoriza-
tion datasets (news), belongs to a specialized do-
main (medical) for which fine-grained distinctions
are required to classify cardiovascular diseases.
In particular for this dataset, word embeddings
trained on a general-domain corpus like UMBC
may not accurately capture the specialized mean-
ing of medical terms and hence, sparsity becomes
an issue. In fact, lowercasing and lemmatizing,
which are mainly aimed at reducing sparsity, out-
perform the vanilla setting by over six points in

14 Average variability was the result of averaging the vari-
ability of each dataset, which was computed as the difference
between the best and the worst preprocessing performances.

the CNN+LSTM setting and clearly outperform
the other preprocessing techniques on the single
CNN model as well.

Nevertheless, the use of more complex pre-
processing techniques such as lemmatization and
multiword grouping does not help in general.
Even though lemmatization has proved useful in
conventional linear models as an effective way
to deal with sparsity (Mullen and Collier, 2004;
Toman et al., 2006), neural network architectures
seem to be more capable of overcoming sparsity
thanks to the generalization power of word embed-
dings.

3.3 Experiment 2: Cross-preprocessing

This experiment aims at studying the impact of
using different word embeddings (with differ-
ently preprocessed training corpora) on tokenized
datasets (vanilla setting). Table 3 shows the re-
sults for this experiment. In this experiment
we observe a different trend, with multiword-
enhanced vectors exhibiting a better performance
both on the single CNN model (best overall per-
formance in seven of the nine datasets) and on
the CNN+LSTM model (best performance in four
datasets and in the same ballpark as the best re-
sults in four of the remaining five datasets). In
this case the same set of words is learnt but sin-
gle tokens inside multiword expressions are not
trained. Instead, these single tokens are consid-
ered in isolation only, without the added noise
when considered inside the multiword expression
as well. For instance, the word Apple has a clearly
different meaning in isolation from the one inside

43

Embedding Topic categorization Polarity detection
b :
FOPrOcesSIE BBC 20News Reuters Ohsumed RTC IMDB PL05 PL04 SF

Vanilla 94.6 89.2 93.7 35.3 832 8751 763 5871 91.2
z Lowercased 93.91 84.61 93.9 36.2 832 854" 1763 60.0f 91.1
O | Lemmatized 94.5 88.71 93.8 35.4 83.0 86.8T 756 62.5 91.2

Multiword 95.6 89.7 93.9 352 833 88.1 75.9 63.1 912
= Vanilla 97.0 90.71 93.1 30.81 84.8 889 79.1 714 87.17
% | Lowercased 964 918 92.5 3021 845 8807 790 742 874
% | Lemmatized 96.6 91.5 92.51 31.7 839 86.60 7847 6777 873
% | Multiword 97.3 91.3 92.8 33.6 843 873t 795 71.8 875

Table 3: Cross-preprocessing evaluation: accuracy on the topic categorization and polarity detection
tasks using different sets of word embeddings to initialize the embedding layer of the two classifiers.
All datasets were preprocessed similarly according to the vanilla setting. | indicates results that are
statistically significant with respect to the top result.

the multiword expression Big_Apple, hence it can
be seen as beneficial not to train the word Ap-
ple when part of this multiword expression. In-
terestingly, using multiword-wise embeddings on
the vanilla setting leads to consistently better re-
sults than using them on the same multiword-
grouped preprocessed dataset in eight of the nine
datasets. This could provide hints on the excellent
results provided by pre-trained Word2vec embed-
dings trained on the Google News corpus, which
learns multiwords similarly to our setting.

Apart from this somewhat surprising finding,
the use of the embeddings trained on a simple to-
kenized corpus (i.e. vanilla) proved again compet-
itive, as different preprocessing techniques such
as lowercasing and lemmatizing do not seem to
help. In fact, the relatively weaker performance
of lemmatization and lowercasing in this cross-
processing experiment is somehow expected as the
coverage of word embeddings in vanilla-tokenized
datasets is limited, e.g., many entities which are
capitalized in the datasets are not covered in the
case of lowercasing, and inflected forms are miss-
ing in the case of lemmatizing.

4 Conclusions

In this paper we analyzed the impact of simple
text preprocessing decisions on the performance
of a standard word-based neural text classifier.
Our evaluations highlight the importance of be-
ing careful in the choice of how to preprocess our
data and to be consistent when comparing differ-
ent systems. In general, a simple tokenization
works equally or better than more complex pre-

44

processing techniques such as lemmatization or
multiword grouping, except for domain-specific
datasets (such as the medical dataset in our ex-
periments) in which sole tokenization performs
poorly. Additionally, word embeddings trained on
multiword-grouped corpora perform surprisingly
well when applied to simple tokenized datasets.
This property has often been overlooked and,
to the best of our knowledge, we test the hy-
pothesis for the first time. In fact, this finding
could partially explain the long-lasting success of
pre-trained Word2vec embeddings, which specifi-
cally learn multiword embeddings as part of their
pipeline (Mikolov et al., 2013b).

Moreover, our analysis shows that there is a
high variance in the results depending on the pre-
processing choice (£2.4% on average for the best
performing model), especially when the training
data is not large enough to generalize. Further
analysis and experimentation would be required
to fully understand the significance of these re-
sults; but, this work can be viewed as a start-
ing point for studying the impact of text prepro-
cessing in deep learning models. We hope that
our findings will encourage future researchers to
carefully select and report these preprocessing de-
cisions when evaluating or comparing different
models. Finally, as future work, we plan to extend
our analysis to other tasks (e.g. question answer-
ing), languages (particularly morphologically rich
languages for which these results may vary) and
preprocessing techniques (e.g. stopword removal
or part-of-speech tagging).

Acknowledgments

Jose Camacho-Collados is supported by the ERC
Starting Grant 637277.

References

Jose Camacho-Collados and Mohammad Taher Pile-
hvar. 2018. From word to sense embeddings: A sur-
vey on vector representations of meaning. Journal
of Artificial Intelligence Research (JAIR).

Alexis Conneau, Holger Schwenk, Loic Barrault, and
Yann Lecun. 2017. Very deep convolutional net-
works for text classification. In Proceedings of
EACL, pages 1107-1116, Valencia, Spain.

Li Dong, Furu Wei, Shujie Liu, Ming Zhou, and Ke Xu.
2015. A statistical parsing framework for sentiment
classification. Computational Linguistics.

Cicero Nogueira Dos Santos and Maira Gatti. 2014.
Deep convolutional neural networks for sentiment
analysis of short texts. In Proceedings of COLING,
pages 69-78.

Sebastian Ebert, Thomas Miiller, and Hinrich Schiitze.
2016. Lamb: A good shepherd of morphologically
rich languages. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 742-752.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of NAACL, pages 1606-1615.

Lucie Flekova and Iryna Gurevych. 2016. Supersense
embeddings: A unified model for supersense inter-
pretation, prediction, and utilization. In Proceedings
of ACL, Berlin, Germany.

Yoav Goldberg. 2016. A primer on neural network
models for natural language processing. Journal of
Artificial Intelligence Research, 57:345-420.

Derek Greene and Padraig Cunningham. 2006. Practi-
cal solutions to the problem of diagonal dominance
in kernel document clustering. In Proceedings of the
23rd International conference on Machine learning,
pages 377-384. ACM.

Lushan Han, Abhay Kashyap, Tim Finin, James May-
field, and Jonathan Weese. 2013. UMBC ebiquity-
core: Semantic textual similarity systems. In Pro-
ceedings of the Second Joint Conference on Lexical
and Computational Semantics, volume 1, pages 44—
52.

Samer Hassan, Rada Mihalcea, and Carmen Banea.
2007. Random walk term weighting for improved
text classification. International Journal of Seman-
tic Computing, 1(04):421-439.

45

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Rie Johnson and Tong Zhang. 2015. Effective use
of word order for text categorization with convolu-
tional neural networks. In Proceedings of NAACL,
pages 103-112, Denver, Colorado.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for

modelling sentences. In Proceedings of ACL, pages
655-665.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of EMNLP.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Proceedings of AAAL

Ilia Kuznetsov and Iryna Gurevych. 2018. From text
to lexicon: Bridging the gap between word em-
beddings and lexical resources. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 233-244.

Ken Lang. 1995. Newsweeder: Learning to filter net-
news. In Proceedings of the 12th international con-
ference on machine learning, pages 331-339.

Yann LeCun, Koray Kavukcuoglu, and Clément Fara-
bet. 2010. Convolutional networks and applications
in vision. In Circuits and Systems (ISCAS), Pro-
ceedings of 2010 IEEE International Symposium on,
pages 253-256. IEEE.

Edda Leopold and Jorg Kindermann. 2002. Text cat-
egorization with support vector machines. how to

represent texts in input space? Machine Learning,
46(1-3):423-444.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211-225.

David D. Lewis, Yiming Yang, Tony G Rose, and Fan
Li. 2004. Rcvl: A new benchmark collection for
text categorization research. Journal of machine
learning research, S(Apr):361-397.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
In Proceedings of EMNLP, Lisbon, Portugal.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of ACL-HLT, pages 142—150, Port-
land, Oregon, USA.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55-60.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111-3119.

Tony Mullen and Nigel Collier. 2004. Sentiment analy-
sis using support vector machines with diverse infor-
mation sources. In EMNLP, volume 4, pages 412—
418.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference
on Machine Learning (ICML-10), pages 807-814.
Omnipress.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the ACL.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
ACL.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of EMNLP, pages
1532-1543.

Mohammad Taher Pilehvar, Jose Camacho-Collados,
Roberto Navigli, and Nigel Collier. 2017. Towards
a Seamless Integration of Word Senses into Down-
stream NLP Applications. In Proceedings of ACL,
Vancouver, Canada.

Adam Poliak, Pushpendre Rastogi, M. Patrick Martin,
and Benjamin Van Durme. 2017. Efficient, compo-
sitional, order-sensitive n-gram embeddings. In Pro-
ceedings of EACL.

Ivan A Sag, Timothy Baldwin, Francis Bond, Ann
Copestake, and Dan Flickinger. 2002. Multiword
expressions: A pain in the neck for nlp. In Interna-
tional Conference on Intelligent Text Processing and
Computational Linguistics, pages 1-15. Springer.

Fabrizio Sebastiani. 2002. Machine learning in auto-
mated text categorization. ACM computing surveys
(CSUR), 34(1):1-47.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher Manning, Andrew Ng, and
Christopher Potts. 2013. Parsing With Composi-
tional Vector Grammars. In Proceedings of EMNLP.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for
sentiment classification. In EMNLP, pages 1422—
1432.

46

Michal Toman, Roman Tesar, and Karel Jezek. 2006.
Influence of word normalization on text classifica-
tion. Proceedings of InSciT, 4:354-358.

Alper Kursat Uysal and Serkan Gunal. 2014. The im-
pact of preprocessing on text classification. Infor-
mation Processing & Management, 50(1):104-112.

Yijun Xiao and Kyunghyun Cho. 2016. Efficient
character-level document classification by com-
bining convolution and recurrent layers. CoRR,
abs/1602.00367.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich
Schiitze. 2017. Comparative study of cnn and rnn
for natural language processing. arXiv preprint
arXiv:1702.01923.

Wenpeng Yin and Hinrich Schiitze. 2014. An explo-

ration of embeddings for generalized phrases. In
ACL (Student Research Workshop), pages 41-47.
Xiang Zhang and Yann LeCun. 2017. Which en-

coding is the best for text classification in chinese,
english, japanese and korean? arXiv preprint
arXiv:1708.02657.

Jump to better conclusions: SCAN both left and right

Joost Bastings! Marco Baroni?

Jason Weston?

2,34

Kyunghyun Cho Douwe Kiela®

'ILLC, University of Amsterdam
2Facebook Al Research
3New York University
“CIFAR Global Scholar
bastings@uva.nl {mbaroni, jase,kyunghyuncho,dkiela}@fb.com

Abstract

Lake and Baroni (2018) recently introduced
the SCAN data set, which consists of simple
commands paired with action sequences and is
intended to test the strong generalization abil-
ities of recurrent sequence-to-sequence mod-
els. Their initial experiments suggested that
such models may fail because they lack the
ability to extract systematic rules. Here, we
take a closer look at SCAN and show that it
does not always capture the kind of generaliza-
tion that it was designed for. To mitigate this
we propose a complementary dataset, which
requires mapping actions back to the original
commands, called NACS. We show that mod-
els that do well on SCAN do not necessarily do
well on NACS, and that NACS exhibits prop-
erties more closely aligned with realistic use-
cases for sequence-to-sequence models.

1 Introduction

In a recent paper, Lake and Baroni (2018) (L&B)
investigate if recurrent sequence-to-sequence
models can exhibit the same strong generalization
that humans are capable of, by virtue of our
capacity to infer the meaning of a phrase from
its constituent parts (i.e., compositionality),
providing empirical tests for this long-standing
goal (Fodor and Pylyshyn, 1988). Compositional
generalization might be a fundamental component
in making models drastically less sample-thirsty
than they currently are. L&B introduce the SCAN
data set (§2), meant to study such generaliza-
tion to novel examples. It consists of simple
command-action pairs, in which more complex
commands are composed of simpler ones (see
Figure 1 for examples).

SCAN comprises several tests of generaliza-
tion, namely with respect to (1) a random sub-
set of the data (‘simple’), (2) commands with ac-
tion sequences longer than those seen during train-
ing (‘length’), and (3) commands that compose a

jump
JUMP

turn around left
LTURN LTURN LTURN LTURN

jump thrice and turn left twice
JUMP JUMP JUMP LTURN LTURN

jump opposite left after walk twice
WALK WALK LTURN LTURN JUMP

Figure 1: SCAN maps commands to actions

primitive in novel ways that was only seen in isola-
tion during training (‘primitive’). In the latter case,
the training set would for example only include the
command ‘jump’, after which the test set includes
all other commands containing ‘jump’, e.g. ‘jump
opposite left after walk twice’.

In this paper we take a closer look at SCAN.
We start with the observation (§3) that there are
few target-side dependencies in the data, a conse-
quence of SCAN being generated from a phrase-
structure grammar. We show (§6) that this allows
simple sequence-to-sequence models (§5) to ob-
tain good accuracies e.g. on tasks involving a new
primitive, even without access to previous out-
puts. However, these simple models do not use
composition in any interesting way, and their per-
formance is therefore not a realistic indicator of
their generalization capability. We hence propose
NACS (§4) as a more realistic alternative: SCAN
with commands and actions flipped, i.e., mapping
actions back to their original commands. This is
harder, because different commands may map to
the same action sequence, and it introduces target-
side dependencies, so that previous outputs need
to be remembered. We show in particular that
well-tuned attention-based models do achieve a
certain degree of generalization on SCAN, and, as

Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 47-55
Brussels, Belgium, November 1, 2018. (©2018 Association for Computational Linguistics

predicted, simpler models do better there. How-
ever, the models still struggle in the more demand-
ing NACS setup, which we offer as a challenge for
future work.

Our contributions can be summarized as fol-
lows:

1. we provide an analysis of SCAN and make
the important observation that it does not test
for target-side dependencies, allowing too
simple models to do well;

2. we propose NACS to introduce target-side
dependencies and remedy the problem;

3. we repeat all experiments in Lake and Ba-
roni (2018) using early-stopping on valida-
tion sets created from the training data.

2 SCAN

SCAN stands for Simplified version of the Com-
mAI Navigation tasks (Mikolov et al., 2016). Each
example in SCAN is constructed by first sam-
pling a command X = (z1,...,2r) from a finite
phrase-structure grammar with start symbol C":

C— Sand S| SafterS|S

S — V twice | V thrice | V

V' — Dy opposite Dy | Dyy) around Dyg) | D | U
D — U left | Uright | turnleft | turn right

U — walk | look | run | jump

For each command, the corresponding target ac-
tion sequence Y = (y1,...,yr) then follows by
applying a set of interpretation functions, such as:

[jump] = JUMP
[u around left | = LTURN [u] LTURN [u]
LTURN [u] LTURN [[u]

[z after zo]] = [z2] [z1]

of which only the last function requires global
reordering, which occurs at most once per com-
mand. See the supplementary materials for the full
set. Figure 1 shows examples of commands and
their action sequences as obtained by the interpre-
tation functions. The commands can be decoded
compositionally by a learner by discovering the in-
terpretation functions, enabling generalization to
unseen commands. The total data set is finite but
large (20910 unambiguous commands).

48

3 SCAN prefers simple models

We observe an important property of the data set
generation process for SCAN: temporal depen-
dencies of the action sequence are limited to the
phrasal boundaries of each sub-phrase, which span
at most 24 actions (e.g. jump around left thrice).
Crucially, even rules that require repetition (such
as ‘thrice’) as well as global reordering, can be re-
solved by simple counting and without remember-
ing previously generated outputs, due to the lim-
ited depth of the phrase-structure grammar (see
e.g. Rodriguez and Wiles (1998)).

This observation has two important implica-
tions. First, because SCAN is largely a phrase-to-
phrase conversion problem, any machine learning
method that aims at solving SCAN needs to have
an alignment mechanism between the source and
target sequences. Such an alignment mechanism
could work fairly accurately by simply advanc-
ing a pointer. Somewhat contrary to the observa-
tion by Lake and Baroni (L&B), we therefore hy-
pothesize that an attention mechanism (Bahdanau
et al., 2015) always helps when a neural con-
ditional sequence model (Sutskever et al., 2014;
Cho et al., 2014) is used to tackle any variant of
SCAN. Second, we speculate that any algorithm
with strong long-term dependency modeling ca-
pabilities can be detrimental in terms of gener-
alization, because such an approach might inap-
propriately capture spurious target-side regulari-
ties in the training data. We thus hypothesize
that less powerful decoders generalize better on
to unseen action combinations on SCAN when
equipped with an attention mechanism.

To summarize: good performance on SCAN
does not necessarily indicate the capability of a
model to strongly generalize. SCAN favors sim-
pler models that need not capture target-side de-
pendencies, which might not work well on more
realistic sequence-to-sequence problems, such as
machine translation, where strong auto-regressive
models are needed for good results (Bahdanau
et al., 2015; Kaiser and Bengio, 2016).

4 NACS: actions to commands

By simply flipping the source X and target Y
of each example, we obtain a data-set that sud-
denly features strong target-side dependencies.
Even when the mapping p(Y | X) from the source
to target is simple, the opposite p(X|Y) o
p(Y|X)p(X) is non-trivial due to the complexity

Figure 2: The decoder of Bahdanau et al. (2015)

of the prior p(X). The inclusion of p(X) naturally
induces strong dependencies among the output to-
kens, while maintaining the original properties of
SCAN that were intended to test various aspects
of systematic generalization.

NACS naturally makes the mapping that needs
to be learned stochastic and multi-modal (sensi-
tive to both commands and actions). For instance,
an action sequence of the form [z1][z2] could
be mapped to either [z and x5] or [z9 after x1],
both of which are correct. In order for a model to
decide whether to output “and” or “after”, it is nec-
essary for it to remember what has already been
generated (i.e., [x1] or [z2]).

Another example is LTURN LTURN LTURN
LTURN, which can be translated into either “turn
around left” or two repetitions of “turn opposite
left”. Deciding whether to output “and” after
the first phrase requires the model to remember
whether “around” was generated previously.

In §6 we experimentally evaluate the proposed
NACS task using the same scenarios as SCAN
(simple, length and primitive). We observe that
NACS prefers more advanced models that could
capture long-term dependencies in the output (now
a command sequence) better. However, we notice
that even these powerful models, equipped with
GRUs and attention, cannot systematically gener-
alize to this task, as was also observed by Lake
and Baroni (2018). Based on this observation, we
believe that NACS (or perhaps a combination of
SCAN and NACS) is better suited for evaluating
any future progress in this direction.

5 Sequence-to-sequence models

In this section, we describe the sequence-to-
sequence models we use for evaluating on SCAN
and its proposed sibling NACS.

We directly model the probability of a tar-
get sequence given a source sequence p(Y|X).

49

Our encoder-decoder is modeled after Cho et al.
(2014) and our attention-based encoder-decoder
after Bahdanau et al. (2015). The attention-based
decoder is a function that takes as input the previ-
ous target word embedding e, ,, the context vec-
tor c;, and the previous hidden state s;_; (see also
Figure 2): s; = f(ey, ,,Ci,Si—1).

The prediction for the current time step
is then made from a pre-output layer t;:
t; = Weey, | + Wee; + Wis;. We do not apply
a max-out layer and directly obtain the output by
o; = W,t;. For the encoder-decoder without at-
tention, the prediction is made directly from de-
coder state s;. We vary the recurrent cell, exper-
imenting with simple RNN (Elman, 1990), GRU
(Cho et al., 2014), and LSTM cells (Hochreiter
and Schmidhuber, 1997). For conciseness we only
report results with RNN and GRU cells in the main
text, and LSTM results in the appendix.

In this paper, we investigate the properties
of both SCAN and NACS using RNN-based
sequence-to-sequence models for evaluation. We
leave further investigation of alternative architec-
tures (see, e.g., Vaswani et al.,, 2017; Gehring
et al., 2017; Chen et al., 2018) for the future.

6 Experiments

6.1 Settings

Our models are implemented in PyTorch and
trained using mini-batch SGD with an initial learn-
ing rate of 0.2, decayed by 0.96 each epoch. We
use a batch size of 32, 256 hidden units (64 for
embeddings), and a dropout rate of 0.2. We test
on all SCAN/NACS tasks', as well as on the Fr-
En Machine Translation (MT) task that L&B used.
The reported results are averaged over three runs
for each experiment. Models with attention are
marked as such with +Atrn, e.g. ‘GRU +Attn’.

Validation Set. L&B split each SCAN subtask
into a training set (80%) and a test set (20%). They
train for a fixed number of updates (100k) and
evaluate on the test set. Because any training run
without early stopping may have missed the op-
timal solution (Caruana et al., 2001), we believe
their results may not reflect the reality as closely
as they could. We thus augment each of the SCAN
variants with a validation set that follows the train-
ing distribution but contains examples that are not
contained in the corresponding training set. This

'github .com/facebookresearch/NACS

Simple Length Turn left Jump
SCAN NACS SCAN NACS SCAN NACS SCAN NACS
GRU 100.0 +0.0 99.0 +01 144 108 129 +12 534 +11.7 475 +ta7 0.0 200 0.0 0.0
RNN A 100.0 00 99.8 +o0.1 9.6 +0.0 19.4 107 81.1 147 44.1 +o0.0 1.9 412 0.3 03
RNN sam-pep 100.0 400 61.1 +03 11.7 +3.2 0.5 +02 920158 18.6+10 2.7 1.7 0.0 0.0
GRU At 100.0 +0.0 99.8 01 18.1 +1.1 172 419 59.1 168 559 435 12.5 466 0.0 0.0
GRU +amnpep 100.0 +0.0 51.2 12 17.8 +1.7 2.0+14 90.8 +36 16.9 +1.2 0.7 404 0.0 +o0.0
L&B best 99.8 - 20.8 - 90.3 - 1.2 -
L&B best overall 997 - 138 - 900 - 01 -

Table 1: Test scores on the simple, length, and primitive (turn left, jump) tasks. +A#tn marks attention, -Dep has the
connections from the previous target word embedding removed (es and et in Figure 2). L&By,.y is the best reported
score for each task by L&B, and L&Bypeg; overan 1 the score for their best-scoring model all tasks considered.

allows us to incorporate early stopping in our ex-
periments so that they are better benchmarks for
evaluating future progress. For each experiment
we remove 10% of the training examples to be
used as a validation set.

Accuracy. Following L&B we measure perfor-
mance according to sequence-level accuracy, i.e.,
whether the generated sequence entirely matches
the reference. This metric is also used for early
stopping. For NACS, an output (command) is
considered correct if its interpretation (‘back-
mapping’) produces the input action sequence.

Ablations. To validate our analysis, we remove
the connections from the previous target word em-
bedding e,, , to the decoder state and the pre-
output layer (es and et in Figure 2), so that the
current prediction is not informed by previous out-
puts. If our analysis in §3 is correct, then these
simpler models should still be able to make the
correct predictions on SCAN, but not on NACS.

6.2 Results and Analysis

Results on the three SCAN and NACS tasks are
listed in Table 1. The full results including mod-
els with LSTM cells and MT experiments may be
found in the supplementary materials. We will
now discuss our observations.

SCAN is not enough. Table 1 shows that all
model variants perform (near) perfectly on the
SCAN simple task. While this is impressive, re-
sults for the severed models (+Attn -Dep) on the
simple task for NACS show that it is possible to
have a perfect accuracy on SCAN, while at the

50

same time failing to do well on NACS.? Crucially,
a (near) perfect score on SCAN does not imply
strong generalization. A model can exploit the de-
terminism and lack of target-side dependencies of
SCAN by developing a simple translation strategy
such as advancing a pointer and translating word
by word, and the use of such a simple strategy is
not revealed by SCAN.

NACS is harder. NACS is a harder problem to
solve compared to SCAN, as evidenced by con-
sistently lower accuracies in Table 1 for all tasks.
The discrepancy between SCAN and NACS per-
formance is the most extreme when we look at the
primitive tasks (turn left and jump). For turn left,
the severed models (+Attn -Dep) obtain the high-
est scores on SCAN, but are the worst on NACS.
The ‘turn left’ task benefits from TURNL oc-
curring on the target-side in other contexts dur-
ing training, which is not the case for ‘jump’.}
Since there is no evidence in the training data that
‘jump’ is a verb, Table 2 shows results where addi-
tional (composed) ‘jump’ commands were added
for training. We see that performance quickly goes
up when adding more commands.* Again here the
simpler models (+Attn -Dep) perform better.

Machine Translation. We repeat L&Bs
English-French MT experiment for both direc-
tions. Table 3 shows that models that perform
well on NACS also perform well here, with the
GRU outperforming the other cells (see appendix

2We made similar observations using LSTM cells, as we
show in the appendix.

3See Lake and Baroni (2018) for a discussion.

“L&B performed this experiment without attention,
which we show has a large positive impact.

1 2 4 8 16 32
RNN :am SCAN 350128 48.6+s1 77.6+26 89.2 +38 98.7 +1.3 99.8 +0.1
RNN :atnpep SCAN 29.5 105 53.3 +102 82.4 47 98.8 tos 99.8 +0.1 100.0 +o.0
GRU At SCAN 58.2 +120 67.8 +34 80.3 +7.0 88.0 6.0 98.3 1.8 99.6 +o.2
GRU :atwmpep SCAN 70.9 1115 61.3 135 83.5 161 99.0 +04 99.7 +0.2 100.0 +o.0
RNN A NACS 2.8 +o0s 93 173 247 +a2 437 144 57.1 152 69.1 2.1
RNN sam-pep NACS 0.4 +o0.1 0.9 +o0.2 24 103 3.9 403 9.3 403 159 414
GRU -am NACS 5.5 +18 92128 11.0x15 219 124 235106 42.0+15
GRU +am-0ep NACS 0.1 01 0.6 +o0.2 2.0 +o.2 3.2 102 5.8 1.1 10.9 108
L&B SCAN 0.1 0.1 4.1 15.3 70.2 89.9

Table 2: Test scores on the ‘jump’ task with additional commands. +Attn marks attention, -Dep has the es and et
connections removed (Figure 2). The test set contains all jump commands except the 32 used for training. Columns
indicate how many commands with ‘jump’ were added to the training set, such as ‘jump around left thrice.’

En-Fr Fr-En
GRU At 32.1 +03 37.5 +o0s
GRU :+ammpep 30.2 +03 35.9 +o3

Table 3: Results (BLEU) on the Machine Translation
experiment for both directions using a GRU. See ap-
pendix for results using SRN and LSTM cells.

for other cell types). In a setting similar to the
jump task, the sentence pair ‘I am daxy’ (‘je suis
daxiste’) was added to the training set. The goal
is now to test if eight novel sentences that contain
‘daxy’ are correctly translated.

In our setting with mini-batching and early-
stopping, the GRU gets 70.8% (En-Fr) and 54.2%
(Fr-En) of the daxy-sentences right, which is sur-
prisingly good compared to L&B (12.5%).

Other observations. As expected, Table 1
shows that attention always helps. Generalizing
to longer sequences is generally hard, and this re-
mains an open problem.

7 Related Work

Ever since Fodor and Pylyshyn (1988) conjectured
that neural networks are unable to show strong
generalization, many attempts were made to show
that the opposite is true, leading to inconclusive
evidence. For example, Phillips (1998) found that
feed-forward nets and RNNs do not always gen-
eralize to novel 2-tuples on an auto-association
task, while Wong and Wang (2007) and Brakel and
Frank (2009) found that RNNs can show system-
atic behavior in a language modeling task.

In the context of analyzing RNNs, Rodriguez
and Wiles (1998) found that simple RNNs can

51

develop a symbol-sensitive counting strategy for
accepting a simple (palindrome) context-free lan-
guage. Weiss et al. (2018) show that LSTMs and
simple RNNs with ReLU-activation can learn to
count unboundedly, in contrast to GRUs.

Linzen et al. (2016) probed the sensitivity of
LSTMs to hierarchical structure (not necessarily
in novel constructions). Instead of a binary choice,
with SCAN a sequence-to-sequence model pro-
ductively generates an output string.

Liska et al. (2018) found that a small number
of identical RNNs trained with different initializa-
tions show compositional behavior on a function
composition task, suggesting that more specific ar-
chitectures may not be necessary.

Finally, Lake and Baroni (2018) introduced the
SCAN data set to study systematic compositional-
ity in recurrent sequence-to-sequence models, in-
cluding gating mechanisms and attention. This
work is a direct response to that and aims to facil-
itate future progress by showing that SCAN does
not necessarily test for strong generalization.

8 Conclusion

In the quest for strong generalization, benchmarks
measuring progress are an important component.
The existing SCAN benchmark allows too simple
models to shine, without the need for composi-
tional generalization. We proposed NACS to rem-
edy this. NACS still requires systematicity, while
introducing stochasticity and strong dependencies
on the target side. We argue that a good bench-
mark needs at least those properties, in order not to
fall prey to trivial solutions, which do not work on
more realistic use-cases for sequence-to-sequence
models such as machine translation.

Acknowledgments

We would like to thank Brenden Lake and
Marc’ Aurelio Ranzato for useful discussions and
feedback.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proceedings of
the International Conference on Learning Represen-
tations (ICLR), San Diego, USA.

Philémon Brakel and Stefan Frank. 2009. Strong sys-
tematicity in sentence processing by simple recur-
rent networks. In 3/th Annual Conference of the
Cognitive Science Society (COGSCI-2009), pages
1599-1604. Cognitive Science Society.

Rich Caruana, Steve Lawrence, and C Lee Giles. 2001.
Overfitting in neural nets: Backpropagation, conju-
gate gradient, and early stopping. In Advances in
neural information processing systems, pages 402—
408.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Niki Parmar, Mike Schuster, Zhifeng Chen,
et al. 2018. The best of both worlds: Combining re-
cent advances in neural machine translation. arXiv
preprint arXiv:1804.09849.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations using RNN Encoder—
Decoder for Statistical Machine Translation. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 1724-1734, Doha, Qatar. Association for
Computational Linguistics.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179-211.

Jerry A Fodor and Zenon W Pylyshyn. 1988. Connec-
tionism and cognitive architecture: A critical analy-
sis. Cognition, 28(1-2):3-71.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N Dauphin. 2017. Convolu-
tional sequence to sequence learning. arXiv preprint
arXiv:1705.03122.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735-1780.

Lukasz Kaiser and Samy Bengio. 2016. Can active
memory replace attention? In Advances in Neural
Information Processing Systems, pages 3781-3789.

52

Brenden M. Lake and Marco Baroni. 2018. Gen-
eralization without systematicity: On the com-
positional skills of sequence-to-sequence recurrent
networks. International Conference on Machine
Learning (ICML).

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of Istms to learn syntax-
sensitive dependencies. Transactions of the Associ-
ation for Computational Linguistics, 4:521-535.

Adam Liska, German Kruszewski, and Marco Ba-
roni. 2018. Memorize or generalize? searching
for a compositional RNN in a haystack. CoRR,
abs/1802.06467.

Tomas Mikolov, Armand Joulin, and Marco Baroni.
2016. A roadmap towards machine intelligence.
In International Conference on Intelligent Text Pro-
cessing and Computational Linguistics, pages 29—
61. Springer.

Steven Phillips. 1998. Are feedforward and recurrent
networks systematic? analysis and implications for
a connectionist cognitive architecture. Connection
Science, 10(2):137-160.

Paul Rodriguez and Janet Wiles. 1998. Recurrent
neural networks can learn to implement symbol-
sensitive counting. In Advances in Neural Informa-
tion Processing Systems, pages 87-93.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104-3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000—6010.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018.
On the practical computational power of finite pre-
cision rnns for language recognition. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), Melbourne, Australia. Association for Com-
putational Linguistics.

Francis CK Wong and William SY Wang. 2007. Gen-
eralisation towards combinatorial productivity in
language acquisition by simple recurrent networks.
In Integration of Knowledge Intensive Multi-Agent
Systems, 2007. KIMAS 2007. International Confer-
ence on, pages 139-144. IEEE.

Supplementary Materials

[walk | = WALK
[look] = LOOK
[run] = RUN
[jump] = JUMP

[turn left] = LTURN
[turn right] = RTURN

[u left] = LTURN [u]
[w right] = RTURN [u]

[z twice] = [z] [x]

[« thrice] = [z] [=] [«]

[turn around left] = LTURN LTURN LTURN LTURN

[turn around right] = RTURN RTURN RTURN RTURN

[u around left] = LTURN [u] LTURN [u] LTURN [u]] LTURN [u]
[u around right] = RTURN [u] RTURN [u] RTURN [u] RTURN [u]

[turn opposite left] = LTURN LTURN

[turn opposite right] = RTURN RTURN

[u opposite left] = [turn opposite left] [u]
[u opposite right] = [turn opposite right] [u]

[z1 and zo] = [z1] [z2]
[[.%'1 after .1‘2]] = [[1'2]] [[xl]]

Figure 3: The interpretation functions for translating SCAN commands to actions.

Simple Length Turnleft Jump

RNN 75.6 +54 0.2 200 26.7 128 0.0 +o0.0
GRU 100.0 0.0 144 10s 53.4 117 0.0 0.0
LSTM 99.8 0.1 10.1 £20 56.5 xos 0.1 xo0.0
RNN A 100.0 0.0 9.6 x0.9 81.1 +147 1.9 1.2
RNN :aun-Dep 100.0 +00 11.7 32 92.0 458 2.7 417
GRU :am 100.0 0.0 18.1 1.1 59.1 +168 12.5 +6.6

GRU :atn-pep 100.0 0.0 17.8 +1.7 90.8 436 0.7 +0.4
LSTM +aun 100.0 0.0 15.6 +1.6 83.8 +16.8 9.7 +2.9
LSTM sampep 100.0 00 125 +13 57.6 138 0.8 o5

L&B best 99.8 20.8 90.3 1.2
L&B best overall 997 138 900 0 1

Table 4: SCAN test scores on the simple, length, and primitive (turn left and jump) tasks. For ‘+Attn-Dep’ models
we removed the connections from the previous target word embedding to the decoder state and the pre-output layer.

53

Simple Length Turnleft Jump

RNN 26.9 t02 02 +x01 264 1120 0.0 xo0.0
GRU 99.0 201 129 112 47.5 +4a7 0.0 200
LSTM 99.1 201 109 +13 429 129 0.0 x0.0
RNN :am 998 201 194 107 44.1 x09 0.3 03
RNN :ampep 611 t03 0.5 +02 18.6 10 0.0 +oo0
GRU :+am 9.8 +01 172 +19 559135 0.0 x00

GRU :atn-pep 512412 20414 169 +12 0.0 +o00
LSTM +aun 99.1 402 17.1 20 483 +17 0.0 +0.0
LSTM +awbep 38.9 +0.9 1.0 +05 17.2 +12 0.0 0.0

Table 5: NACS test scores on the simple, length, and primitive (turn left and jump) tasks. For ‘+Attn-Dep’ models
we removed the connections from the previous target word embedding to the decoder state and the pre-output layer.

0 1 2 4 8 16 32
RNN 0.0 00 0.0+00 0.0+00 0.1 +00 0.1 +01 0.5 +03 1.4 +o03
GRU 0.1 +00 02 +01 06 +02 25+11 3.3+09 13.1 424 424 125
LSTM 0.1 00 03102 13+02 3.8+18 25411 65+27 213114
RNN :atn 35430 350428 48.6+81 77.6+26 892138 98.7 +1.3 99.8 101
RNN -Attn-Dep 2.7 +1.7 295 +105 53.3 +102 824 +47 98.8 108 99.8 +0.1 100.0 +o.0
GRU :atn 12.5 6.6 58.2 +12.0 67.8 +34 80.3 +7.0 88.0 6.0 98.3 +18 99.6 +o0.2

GRU aun-Dep 0.7 +0.4a 70.9 4115 61.3 +135 83.5 461 99.0 04 99.7 02 100.0 +o0.0
LSTM :aun 7.8 0.0 40.2 9.3 37.7 +10.7 50.3 139 62.2 177 94.0 +27 98.6 +1.0
LSTM :ampep 0.8 06 39.0 +6.5 43.6 176 66.0 £1.6 86.1 +23 98.7 +16 99.8 +0.2

L&B 0.1 0.1 0.1 4.1 15.3 70.2 89.9

Table 6: SCAN test scores for jump with additional composed commands.

0 1 2 4 8 16 32
RNN 0.0 0.0 0.1 00 0.1 01 0.2 x00 0.7 202 0.4 00 0.8 +o01
GRU 0.0 +0.0 03 102 04 +01 03102 1.0+04 58 +01 20.8 +2:2
LSTM 0.0 400 0.6 +04 05403 0.7+00 1.0+03 3.7+04 114 412

RNN -4t 03 +03 2.8x08 93173 247 42 437 44 57.1 £52 69.1 +2.1
RNN sampep 0.0 200 0.4 +01 0.9 +02 24 +03 3.9+03 93103 159 414
GRU +amn 0.0 x00 55z18 92128 11.0x15 21.9 124 235106 42.0 15
GRU +ampep 0.0 00 0.1 01 0.6 02 2.0x02 32102 5.8 =+11 109 zos
LSTM -aun 0.0 x00 2.1 202 3.7+09 6.6x05 12.5+25 21.8 x26 34.2 +1.7
LSTM +ampep 0.0 2000 0.4 02 0.9 +01 1.5+02 19103 32406 7.4 +o09

Table 7: NACS test scores for jump with additional composed commands.

54

En-Fr Fr-En

RNN i 29.1 +04 34.9 +os
RNN -Attn-Dep 27.5 07 32.9 +os
GRU +amn 32.1 +0.3 37.5 +os

GRU :atn-Dep 30.2 +0.3 35.9 +os
LSTM +Attn 31 5 +0.2 369 +1.1
LSTM :ambep 28.7 +0.2 34.0 +0.1

Table 8: Results (BLEU) on the Machine Translation experiment for both directions.

En-Fr Fr-En

RNN :ain 79.2 +15.6 41.7 +5.9
RNN +Attn-Dep 667 +5.9 417 +5.9
GRU :am 70.8 +11.8 54.2 +5.9

GRU :aun-pep 58.3 +59 45.8 118
LSTM :au 75.0 +102 41.7 +15.6
LSTM +ampep 50.0 102 41.7 +5.9

Table 9: Machine Translation: accuracy on eight novel sentences containing ‘daxy’ (‘daxiste’).

En-Fr Fr-En

RNN :aun 66.7 +5.9 20.8 +5.9
RNN +atn-Dep 66.7 +59 29.2 11556
GRU :am 62.5 +00 33.3 4509
GRU :atn-Dep 66.7 +5.9 25.0 +204
LSTM +am 66.7 +5.9 25.0 102
LSTM :ambep 62.5 +00 25.0 +17.7

Table 10: Machine Translation: accuracy on eight novel sentences containing ‘tired’ (‘fatigué’).

55

Understanding Convolutional Neural Networks for Text Classification

Alon Jacovil?

Oren Sar Shalom??

Yoav Goldberg'*

! Computer Science Department, Bar Ilan Univesity, Israel
2 IBM Research, Haifa, Israel
3 Intuit, Hod HaSharon, Israel
4 Allen Institute for Artificial Intelligence
{alonjacovi,oren.sarshalom, yoav.goldberg}@gmail.com

Abstract

We present an analysis into the inner workings
of Convolutional Neural Networks (CNNs) for
processing text. CNNs used for computer vi-
sion can be interpreted by projecting filters
into image space, but for discrete sequence in-
puts CNNs remain a mystery. We aim to un-
derstand the method by which the networks
process and classify text. We examine com-
mon hypotheses to this problem: that filters,
accompanied by global max-pooling, serve as
ngram detectors. We show that filters may
capture several different semantic classes of
ngrams by using different activation patterns,
and that global max-pooling induces behav-
ior which separates important ngrams from the
rest. Finally, we show practical use cases de-
rived from our findings in the form of model
interpretability (explaining a trained model by
deriving a concrete identity for each filter,
bridging the gap between visualization tools
in vision tasks and NLP) and prediction inter-
pretability (explaining predictions).

1 Introduction

Convolutional Neural Networks (CNNs), origi-
nally invented for computer vision, have been
shown to achieve strong performance on text clas-
sification tasks (Bai et al., 2018; Kalchbrenner
et al.,, 2014; Wang et al., 2015; Zhang et al.,
2015; Johnson and Zhang, 2015; lyyer et al.,
2015) as well as other traditional Natural Lan-
guage Processing (NLP) tasks (Collobert et al.,
2011), even when considering relatively simple
one-layer models (Kim, 2014).

As with other architectures of neural networks,
explaining the learned functionality of CNNs is
still an active research area. The ability to inter-
pret neural models can be used to increase trust in
model predictions, analyze errors or improve the
model (Ribeiro et al., 2016). The problem of inter-
pretability in machine learning can be divided into

two concrete tasks: Given a trained model, model
interpretability aims to supply a structured expla-
nation which captures what the model has learned.
Given a trained model and a single example, pre-
diction interpretability aims to explain how the
model arrived at its prediction. These can be fur-
ther divided into white-box and black-box tech-
niques. While recent works have begun to sup-
ply the means of interpreting predictions (Alvarez-
Melis and Jaakkola, 2017; Lei et al., 2016; Guo
et al., 2018), interpreting neural NLP models re-
mains an under-explored area.

Accompanying their rising popularity, CNNs
have seen multiple advances in interpretability
when used for computer vision tasks (Zeiler and
Fergus, 2014). These techniques unfortunately do
not trivially apply to discrete sequences, as they
assume a continuous input space used to represent
images. Intuitions about how CNNs work on an
abstract level also may not carry over from image
inputs to text—for example, pooling in CNNs has
been used to induce deformation invariance (Le-
Cun et al., 1998, 2015), which is likely different
than the role it has when processing text.

In this work, we examine and attempt to under-
stand how CNNs process text, and then use this in-
formation for the more practical goals of improv-
ing model-level and prediction-level explanations.

We identify and refine current intuitions as to
how CNNs work. Specifically, current common
wisdom suggests that CNNs classify text by work-
ing through the following steps (Goldberg, 2016):

1) 1-dimensional convolving filters are used as
ngram detectors, each filter specializing in a
closely-related family of ngrams.

2) Max-pooling over time extracts the relevant
ngrams for making a decision.

3) The rest of the network classifies the text
based on this information.

Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 56—65
Brussels, Belgium, November 1, 2018. (©2018 Association for Computational Linguistics

We refine items 1 and 2 and show that:

* Max-pooling induces a thresholding behav-
ior, and values below a given threshold are
ignored when (i.e. irrelevant to) making a
prediction. Specifically, we show an exper-
iment for which 40% of the pooled ngrams
on average can be dropped with no loss of
performance (Section 4).

* Filters are not homogeneous, i.e. a single fil-
ter can, and often does, detect multiple dis-
tinctly different families of ngrams (Section
5.3).

* Filters also detect negative items in ngrams—
they not only select for a family of ngrams
but often actively suppress a related family
of negated ngrams (Section 5.4).

We also show that the filters are trained to work
with naturally-occurring ngrams, and can be eas-
ily misled (made to produce values substantially
larger than their expected range) by selected non-
natural ngrams.

These findings can be used for improving
model-level and prediction-level interpretability
(Section 6). Concretely: 1) We improve model
interpretability by deriving a useful summary for
each filter, highlighting the kinds of structures it
is sensitive to. 2) We improve prediction inter-
pretability by focusing on informative ngrams and
taking into account also the negative cues.

2 Background: 1D Text Convolutions

We focus on the task of text classification. We con-
sider the common architecture in which each word
in a document is represented as an embedding vec-
tor, a single convolutional layer with m filters is
applied, producing an m-dimensional vector for
each document ngram. The vectors are combined
using max-pooling followed by a ReLU activation.
The result is then passed to a linear layer for the fi-
nal classification.

For an n-words input text wy, ..., w, we embed
each symbol as d dimensional vector, resulting in
word vectors wi, ..., W,, € R, The resulting dxn
matrix is then fed into a convolutional layer where
we pass a sliding window over the text. For each
[-words ngram:

u; = (Wi, ..., Wiy 1] € Rx¢ :0<i<n—/(

And for each filter f; € Rt we calcu-
late (u;,f;). The convolution results in matrix

57

F € R™™., Applying max-pooling across the
ngram dimension results in p € R™ which is fed
into ReLU non-linearity. Finally, a linear fully-
connected layer W € R“*™ produces the distri-
bution over classification classes from which the
strongest class is outputted. Formally:

;= [Wi..; Wigo_1]

Fij = (u;, £5)

pj = ReLU(max Fj;)
1

o = softmax(Wp)

In practice, we use multiple window sizes ¢ € L,
L C N by using multiple convolution layers in
parallel and concatenating the resulting p’ vectors.
We note that the methods in this work are applica-
ble for dilated convolutions as well.

3 Datasets and Hyperparameters

For our empirical experiments and results pre-
sented in this work we use three text classifica-
tion datasets for Sentiment Analysis, which in-
volves classifying the input text (user reviews in
all cases) between positive and negative. The spe-
cific datasets were chosen for their relative variety
in size and domain as well as for the relative sim-
plicity and interpretability of the binary sentiment
analysis task.

The three datasets are: a) MR: sentence polarity
dataset v1.0 introduced by Pang and Lee (2005),
containing 10k evenly split short (sentences or
snippets) movie reviews. b) Elec: electronic prod-
uct reviews for sentiment classification introduced
by Johnson and Zhang (2015), assembled from the
Amazon review dataset (McAuley and Leskovec,
2013; McAuley et al., 2015), containing 200k train
and 25k test evenly split reviews. c) Yelp Review
Polarity: introduced by Zhang et al. (2015) from
the Yelp Dataset Challenge 2015, containing 560k
train and 38k test evenly split business reviews.

For word embeddings, we use the pre-trained
GloVe Wikipedia 2014—Gigaword 5 embeddings
(Pennington et al., 2014), which we fine-tune with
the model.

We use embedding dimension of 50, filter sizes
of £ € {2,3,4} words, and m € {10, 50} filters.
Models are implemented in PyTorch and trained
with the Adam optimizer.

4 Identifying Important Features

Current common wisdom posits that filters serve
as ngram detectors: each filter searches for a spe-
cific class of ngrams, which it marks by assigning
them high scores. These highest-scoring detected
ngrams survive the max-pooling operation. The fi-
nal decision is then based on the set of ngrams in
the max-pooled vector (represented by the set of
corresponding filters). Intuitively, ngrams which
any filter scores highly (relative to how it scores
other ngrams) are ngrams which are highly rele-
vant for the classification of the text.

In this section we refine this view by attempting
to answer the questions: what information about
ngrams is captured in the max-pooled vector, and
how is it used for the final classification?'

4.1 Informative vs. Uninformative Ngrams

Consider the pooled vector p € R™ on which
the classification is based. Each value p;
ReLU(max;(uj, fj)) stems from a filter-ngram in-
teraction, and can be traced back to the ngram
u; = [Wj, ..., W;¢_1] that triggered it. Denote the
set of ngrams contributing to p as Sp. Ngrams not
in Sp, do not influence the decision of the classifier.
But what about the ngrams that are in S,? Previ-
ous attempts in prediction-based interpretation of
CNNss for text highlight the ngrams in Sy, and their
scores as means of explaining the prediction. We
take here a more refined view. Note that the final
classification does not observe the ngram identi-
ties directly, but only through the scores assigned
to them by the filters. Hence, the information in p
must rely on the assigned scores.

Conceptually, we separate ngrams in Sp into
two classes, deliberate and accidental.
Deliberate ngrams end up in Sy because they
were scored high by their filter, likely because they
are informative regarding the final decision. In
contrast, accidental ngrams end up in Sy, despite
having a low score, because no other ngram scored
higher than them. These ngrams are likely not in-
formative for the classification decision. Can we
tease apart the deliberate and accidental ngrams?

!Although this work focuses on text classification, the
findings in this section apply to any neural architecture which
utilizes global max pooling, for both discrete and continuous
domains. To our knowledge this is the first work that exam-
ines the assumption that max-pooling induces classifying be-
havior. Previously, Ruderman et al. (2018) showed that other
assumptions to the functionality of max-pooling as deforma-
tion stabilizers (relevant only in continuous domains) do not
necessarily hold true.

58

We assume that there is threshold for each filter,
where values above the threshold signal informa-
tive information regarding the classification, while
values below the threshold are uninformative and
can be ignored for the purpose of classification.
We thus search for the threshold that separate the
two classes. However, as we cannot measure di-
rectly which values p; influence the final decision,
we opt instead for measuring correlation between
p; values and the predicted label for the vector p.

The linearity of the decision function Wp al-
lows to measure exactly how much p; is weighted
for the logit of label class k. The class which filter
f; contributes to is ¢; = arg max;, Wy;2. We refer
to class c; as the class identity of filter f;.

By assigning each filter a class identity c; and
comparing it to the predicted label we arrive at
a correlation label—whether the filter’s identity
class matches the final decision by the network.
Concretely, we run the classifier over a set of texts,
resulting in pooled vectors p’ and network predic-
tions ¢’. For each filter j we then consider the val-
ues p’; and whether ¢ = ¢;. For each filter, we
obtain a dataset (10]1-,01 = ¢j)y ., (p?,cD = ¢j),
and we look for a threshold ¢; that separates p§~ for
which ¢! = c; from those where ¢t £ cj.

(X,Y); = {0}, =¢;j) | j <m&i <D}

In an ideal case, the set is linearly separable
and we can easily separate informative from un-
informative values: if pé- > t; then the classifier’s
prediction agrees with the filter’s label, and oth-
erwise they disagree. In practice, the set is not
separable. We instead work with the purity of a
filter-threshold combination, defined as the per-
centage of informative (correlative) ngrams which
were scored above the threshold®. Formally, given
threshold dataset (X, Y):

purity(f,t) =
{(z.y) € (X.Y); | &>t &y = truc)|
{(z,y) € (X, Y)5 | = >t}
We heuristically set the threshold of a filter to
the lowest value that achieves a sufficiently high

YIn the case of non-linear fully-connected layers, the
question of how each feature contributes to each class is
significantly harder to answer. Possible methods include
saliency map methods or gradient-based methods. Re-
cently, Guo et al. (2018) has attributed labels to filters using
Bayesian inference and other image annotations.

3The purity metric can be considered as the precision met-
ric for this task.

purity (we experimentally find that a purity value
of 0.75 works well).

In Figure 2b,c we show examples for threshold
datasets for a model trained on the MR sentiment
analysis task.

Threshold Effectiveness We described a
method for obtaining per-filter threshold values.
But is the threshold assumption—that items
below a given threshold do not participate in the
decision—even correct? To assess the quality of
threshold obtained by our proposal and validate
the thresholding assumption, we discard values
that do not pass the threshold for each filter and
observe the performance of the model. Practi-
cally, we replace the ReLU non-linearity with a
threshold function:

ifx >t

otherwise

threshold(x,t) = {g’
Figure 1 presents the results on the MR dataset
(we observed similar results on the Elec dataset).
where the threshold is set for each filter separately,
based on a shared purity value. If the threshold-
ing assumption is correct and our way of deriv-
ing the threshold is effective, we expect to not see
a drop in accuracy. Indeed, for purity value of
0.75, we observe that the model performance im-
proves slightly when replacing the ReLU with a
per-filter threshold, indicating that the threshold-
ing model is indeed a good approximation for the
feature behavior